Г. А. Дрецер

ОСНОВЫ КОНВЕКТИВНОГО ТЕПЛООБМЕНА В КАНАЛАХ
ОСНОВЫ КОНВЕКТИВНОГО ТЕПЛООБМЕНА В КАНАЛАХ
Учебное пособие

Утверждено
на заседании редсовета
II апреля 1988 г.

Москва
Издательство МАИ
1989
Настоящее издание представляет собой учебное пособие по курсу "Теплопередача", который читается кафедрой аэрокосмической тепло-техники Московского авиационного института для студентов различных факультетов МАИ. Оно дополняет существующий учебник по теплопередаче [1] и вышедший ранее учебное пособие [2].

Изучение процессов теплообмена в каналах весьма актуально для создания энергетических установок и теплообменных устройств летательных аппаратов, систем охлаждения элементов двигателя и летательных аппаратов, систем охлаждения и терморегулирования радиоэлектронного оборудования, систем кондиционирования летательных аппаратов. Для расчета разнообразных теплообменных устройств, применяемых в авиационной технике, необходимы данные по теплофизическим и гидродинамическим режимам и каналов разной формы с разнообразными условиями входа, при различных законах подвода или отвода тепла, для жидкостей и газообразных теплоносителей с переменными теплофизическими свойствами.

В настоящем пособии по теплообмену эти вопросы освещены недостаточно, что и явилось причиной написания данного учебного пособия. Его цель — помочь студентам понять особенности теплообмена и гидродинамики в каналах и выбрать нужные зависимости для практических расчетов. Для более глубокого изучения рассматриваемых вопросов можно рекомендовать монографии [3–17].

Под конвективным теплообменом (теплообменом конвекцией) понимают теплообмен, обусловленный совместным действием конвективного и молекулярного переноса тепла. Под конвективным переносом понимают процесс переноса тепла при перемешивании микромасштаба жидкости или газа в пространстве из области с одной температурой в область с другой температурой. Конвекция возможна только при движении среды. Перенос тепла конвекционной связан с переносом веществ. Под молекулярным переносом (теплопроводностью) понимают процесс переноса тепла посредством движения микромасштаба в среде с неоднородным распределением температуры. Конвективные течения всегда сопровождаются теплопроводностью, так как при движении жидкости или газа...
некоторое происходит соприкосновение отдельных частиц, имеющих различные температуры.

Обычно в инженерных расчетах определяют конвективный теплообмен между потоком жидкости и газа и поверхностью твердого тела, называемый конвективной теплообменной или просто теплообменной.

На практике при расчетах теплообмена используют закон Ньютона - Рихмана

\[Q = \alpha (T_w - T_f) F \text{ Btm}, \]

(1)

Согласно этому закону тепловой поток \(Q \) (количество тепла, проходящее в единицу времени через произвольную поверхность от жидкости к стенке или от стенки к жидкости) пропорционален поверхности теплообмена \(F \) и разности температур поверхности тела \(T_w \) и окружающей тела жидкости или газообразной среды \(T_f \). Разность температур \(\Delta T = T_w - T_f \) называется температурным напором. Коэффициент пропорциональности \(\alpha \), учитывающий конкретные условия теплообмена, называют коэффициентом теплообмена.

В общем случае коэффициент теплообмена рассчитывается по формуле

\[\alpha = \frac{dQ}{(T_w - T_f) dF} = g/(T_w - T_f) \text{ Brt/(m}^2\text{K)} \]

(2)

Таким образом, коэффициент теплообмена есть плотность теплового потока \(q \) (теплового потока, отнесенного к единице площади поверхности) на поверхности тела, отнесенная к разности температур поверхности тела и окружающей среды.

Теплообмен является достаточно сложным процессом. В наиболее общем случае коэффициент теплообмена определяет функцию в зависимости от температуры, скорости и температуры жидкости, физических параметров жидкости (коэффициента теплопроводности \(\lambda \), темперауры \(\theta \), плотности \(\rho \), температуропроводности \(\alpha \), коэффициента динамической вязкости \(\mu \)) и других параметров. Эти параметры \(\lambda, \rho, \theta, \alpha, \mu \) используются при рассмотрении теплообмена. Коэффициент динамической вязкости \(\mu \) численно равен касательному напряжению на жидкости в температуре, ориентированной по течению, при градиенте скорости по нормали к напряжению движения \(d\omega/dn \), равен единице, т.е.

\[\mu = -\frac{d\omega}{dn} \frac{H-c}{m^2} \]

Наряду с коэффициентом динамической вязкости \(\mu \) часто используется коэффициент кинематической вязкости \(\nu = \mu/\rho \text{ m}^2/s \). Коэффициенты \(\mu \) и \(\nu \) существенно зависят от температуры. У капельных жидкостей вязкость почти не зависит от давления и значительно уменьшается при повышении температур. У газов вязкость уменьшается с ростом температуры и практически не зависит от давления (например, при повышении давления воздуха от 0,1 до 10 МПа вязкость воздуха возрастает на 10%). Коэффициент кинематической вязкости \(\nu \) обратно пропорционален плотности газа, а поэтому оно возрастает с повышением температуры, и обратно пропорционально давлению.

Тепловое расширение жидкости характеризуется температурным коэффициентом объемного расширения \(\beta = \theta/(\rho \cdot d\rho/d\theta) \), равным относительному изменению объема \(V = \rho \cdot d\rho/d\theta \) при изменении температуры на один градус и постоянном давлении. Для капельных жидкостей коэффициент \(\beta \) сравнительно мал и положителен (из-за его составляют вода при \(t < 40^\circ C \), когда \(\beta < 0 \)). Для идеального газа \(\beta = 1/T \) /K.

Процесс конвективного теплообмена зависит от природы возникновения движения жидкости. Различают вынужденную и естественную (свободную) конвекцию.

В первом случае жидкость или газ движутся за счет внешних поверхностных сил, приложенных на границе системы, или однородного поля массовых сил, приложенных к жидкости внутри системы, или за счет кинетической энергии, сообщенной жидкости или газу вне системы.

Во втором случае движение жидкости вызвано действием неоднородного поля массовых сил, приложенных к частицам жидкости внутри системы и обусловленных внешними полями (граничными, магнитными, электрическими). Например, свободное гравитационное движение вызывается действием гравитационного поля в системе с неоднородным распределением плотности жидкости, которое является следствием неоднородного распределения температуры.

Вынужденное движение может сопровождаться свободным движением. Относительное влияние последнего тем больше, чем значительное различие температуры отдельных частей жидкости и меньше скорость вынужденного движения. При высоких скоростях вынужденного движения влияние свободной конвенции пренебрежимо мало.

Главным отличием в использовании основного закона теплообмена является в определении коэффициента теплообмена (2). Практически изучение процесса теплообмена сводится к нахождению зависимости коэффициента теплообмена от различных факторов.

Существенное влияние на процесс конвективного теплообмена оказывает характер движения жидкости, так как он определяется
механизм переноса тепла. При ламинарном режиме течения частицы жидкости движутся не перемещаясь, а тепло тела по нормали к направлению движения осуществляется путем теплопроводности. При турбулентном течении траектории частиц жидкости неопределенны, хаотически, направленные и скорость движения отдельных частиц в значительной степени варьируют, а тепло тела по нормали к направлению переноса жидкости осуществляется как за счет теплопроводности, так и за счет пульсаций (конвекции). При этом пульсаций перенос тепла может не менее чем на порядок превосходить перенос его путем теплопроводности.

Форма и размеры поверхности теплообмена значительно влияют на теплообмен. Вид теплообменника существенно влияет на теплообмен. Часто в топливных формах, например, при топливных газах, можно рассмотреть тепловые теплообменники. Так, в плане может быть или для тепловых теплообменников, может располагаться вертикально, горизонтально или наклонно. Из труха воды могут быть различными теплообменники: обтекаемые трубы, спиральные и т.д. Каждая телеса варяется специфические условия для движения частиц жидкости и теплообмена.

I. ДИССИПАЦИЯ УРАВНЕНИЯ И ТЕРМИЧЕСКИЕ УСЛОВИЯ ДЛЯ КОНВЕКТИВНОГО ТЕПЛОПОВОДА

При изучении процессов теплообмена применяются основной образом физико-химических метод исследования, который заключается в следующем [3]:

1. Телеса теплообменника представляет собой трехмерную систему. Его молекулярную структуру нельзя рассматривать, а микроскопический механизм переноса тепла учитывается переносом носителей (сопротивлением теплопроводности, плотности ρ, теплоемкости Cρ), характеризуемых физическими свойствами вещества. Последние позиции, как правило, задаются.

2. Для составления математического уравнения процессов теплообмена используются основные законы термодинамики, законы сохранения тепла и закона сохранения количества движения.

3. Для составления заключительной системы дифференциальных уравнений используют законы о гидродинамике и закона сохранения количества движения.

При феноменологии методе исследования процесса теплопроводности теплообменника теплообмена может быть идентифицирован в виде скоростей \(\bar{w} \), давления \(\rho \), температуры \(T \) в зависимости от координат \(x, y, z \) и времени \(t \). Для стационарного процесса \(\bar{w}, \rho, T \) зависит только от \(x, y, z \).

Для определения силы инерции (трех компонент вектора скорости \(\bar{w} \), \(\rho \) и \(T \)) необходимо иметь сеть уравнений. Из них вытекают основные законы физики (законы сохранения массы, количества движения и энергии). В уравнениях с законами фазовыми уравнениями могут быть выражены уравнения, которые задают математическую систему уравнений. Для решения процесса конвективного теплообмена и движения жидкости можно использовать следующий вид:

1. Уравнение энергии:

\[
\rho C_p \left[\frac{\partial T}{\partial t} + u_x \frac{\partial T}{\partial x} + u_y \frac{\partial T}{\partial y} + u_z \frac{\partial T}{\partial z} \right] = \\
= \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right) + g_x + \mu \Phi, \tag{3}
\]

где \(u_x, u_y, u_z \) — проекция скорости на ось \(x, y, z \); \(g_x \) — плотность внутренних источников теплопроводности; \(\Phi \) — функция рассеяния (диссипации) механической энергии потока:

\[
\Phi = \rho \left[\frac{1}{2} \left(\frac{\partial u_x}{\partial x} \right)^2 + \frac{1}{2} \left(\frac{\partial u_y}{\partial y} \right)^2 + \frac{1}{2} \left(\frac{\partial u_z}{\partial z} \right)^2 \right] + \\
\left(\frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} \right)^2 + \left(\frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x} \right)^2 + \left(\frac{\partial u_y}{\partial z} + \frac{\partial u_z}{\partial y} \right)^2,
\]

2. Уравнение движения в проекциях на ось \(x, y, z \) (уравнение Навье — Стокса):

\[
\rho \left(\frac{\partial u_x}{\partial t} + u_x \frac{\partial u_x}{\partial x} + u_y \frac{\partial u_x}{\partial y} + u_z \frac{\partial u_x}{\partial z} \right) = \\
= \rho \frac{\partial u_x}{\partial x} - \frac{\partial}{\partial x} \left(\mu \frac{\partial u_x}{\partial x} - \frac{\partial}{\partial x} \phi \bar{w} \bar{w} \right) + \\
\frac{\partial}{\partial y} \left[\mu \frac{\partial u_x}{\partial y} \right] + \frac{\partial}{\partial z} \left[\mu \left(\frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x} \right) \right];
\]
При феноменологическом описании процессов теплообмена скорость на поверхности тела S принимает равной нулю, так как жидкость приливает к поверхности, т.е.

$$\vec{v}(S) = 0.$$

При течении жидкости в каналах граничные условия для температурного поля могут быть заданы в виде изменения температуры на поверхности тела (граничная условие первого рода)

$$T = T(S, x)$$

или в виде изменения плотности теплового потока (граничных условия второго рода)

$$q = q(S, x).$$

3. Базовые условия, характеризующие распределение скоростей, температуры и давления в начальный момент времени при $x = 0$:

$$\vec{v} = \vec{v}(x, y, z, 0); \quad T = T(x, y, z, 0); \quad p = p(x, y, z, 0).$$

Для стационарного процесса граничные условия по времени не изменяются, а начальные условия не требуются.

Для ламинарного течения системы уравнений (3) – (5) с учетом (6) – (10) является замкнутой. В общем случае получать аналитическое решение не удается, поэтому задачу решают численно, исходя из возможностей современных численных методов.

Для турбулентного течения рассматриваемая система уравнений незамкнута, так как для мгновенных значений параметров задача является нестационарной, а имеющихся представлений о турбулентном течении недостаточно для задания начальных условий (10). Поэтому для замкнутых систем необходимы дополнительные предположения, опирающиеся на экспериментальные данные. Если приближенное теоретическое решение получается неверным, применяют метод подобия для определения типа критериальной зависимости и на основе экспериментальных исследований выявляют количественную связь между критериями подобия. Таким образом, для исследования теплообмена характерно сочетание теоретических и экспериментальных методов.

Для турбулентного течения уравнения Навье – Стокса были преобразованы Рейнольдсом следующим образом. Для стационарного режима значения скоростей и температуры в турбулентном потоке за достаточно большой промежуток времени средним остаются постоянными. Исходные (мгновенные) значения скоростей и температуры непрерывно отклоняются от среднего значения по величине, а для скорости – в противоположном направлении.
Испытание значения параметров можно представить в виде следующих уравнений:

\[
\begin{align*}
\mathcal{f}(c) &= f^2(c) + T^2(c) + \omega^2 \phi^2(c), \\
\mathcal{f}(c) &= f^2(c) + T^2(c) - \omega^2 \phi^2(c),
\end{align*}
\]

где \(f \) – функция, характеризующая изменение скорости, давления или температуры; \(f^2 \) – средняя по времени соответствующая величина; \(f^2 \) – пульсационная составляющая. Отметим,

\[
\Delta f^2 = \frac{1}{T} \int_{t_0}^{t_0 + T} \mathcal{f}(c) \, dc.
\]

Применение этого правила позволяет получить из (3) – (5) уравнения Рейнольдса, причем для течения в каналах преоборотным условиям пульсационных составляющих по направлению проходной оси \(z \), изменением давления по оси \(y \), нормальной к поверхности теплообмена, а влиянием силы тяжести:

\[
\begin{align*}
\rho \left(\frac{\partial w_x}{\partial x} + \rho w_x \frac{\partial w_x}{\partial x} \right) + \rho w_y \frac{\partial w_x}{\partial y} + \rho w_z \frac{\partial w_x}{\partial z} &= -\frac{\partial p}{\partial x} + \frac{\partial}{\partial y} \left(\mu \frac{\partial w_x}{\partial y} - \rho w_y w_x \right) + \frac{\partial}{\partial z} \left(\mu \frac{\partial w_x}{\partial z} - \rho w_z w_x \right); \\
\frac{\partial p}{\partial x} &= 0; \\
\rho \left(\frac{\partial w_y}{\partial x} + \frac{\partial w_y}{\partial x} \right) + \rho w_y \frac{\partial w_y}{\partial y} + \rho w_z \frac{\partial w_y}{\partial z} &= -\frac{\partial p}{\partial y} + \frac{\partial}{\partial y} \left(\mu \frac{\partial w_y}{\partial y} - \rho w_y w_y \right) + \frac{\partial}{\partial z} \left(\mu \frac{\partial w_y}{\partial z} - \rho w_z w_y \right); \\
\frac{\partial p}{\partial y} &= 0; \\
\rho c_p \left(\frac{\partial \theta}{\partial x} + \frac{\partial \theta}{\partial x} \right) + u_x \frac{\partial \theta}{\partial y} + u_x \frac{\partial \theta}{\partial z} &= -\frac{\partial}{\partial y} \left(\lambda \frac{\partial \theta}{\partial y} - \rho c_p \frac{\partial \theta}{\partial y} \right) + \frac{\partial}{\partial z} \left(\lambda \frac{\partial \theta}{\partial z} - \rho c_p \frac{\partial \theta}{\partial z} \right) + q_x.
\end{align*}
\]

где \(w, \rho, T \) – осредненные значения за период турбулентных пульсаций; \(f \) – функция, характеризующая изменение скорости, давления или температуры; \(f^2 \) – средняя по времени соответствующая величина; \(f^2 \) – пульсационная составляющая.

(II) задачи, что в осредненном движении турбулентные пульсации зависят от максимального трения и теплопроводности в надпленевых слоях турбулентных движений и теплопроводности. Выражается она через коэффициенты связи между температурой и теплопроводностью в потоке.

По аналогии с \(\mu \) и \(\lambda \) вводят коэффициенты тамбурной вязкости \(\mu_\tau \) и теплопроводности \(\lambda_\tau \), которые определяются из следующих зависимостей:

\[
\begin{align*}
\mathcal{q}_{\tau x} &= \left(\mu_\tau \right)_{xy} \frac{\partial w_x}{\partial y} = -\rho \frac{w_x}{w_y} \frac{w_y}{w_y}; \\
\mathcal{q}_{\tau y} &= -\left(\lambda_\tau \right)_{xy} \frac{\partial T}{\partial y} = \rho c_p \frac{w_x}{w_y} w_y.
\end{align*}
\]

Если предположить, что коэффициенты тамбурной вязкости \(\mu_\tau \) и теплопроводности \(\lambda_\tau \) и в каждой точке пространства одинаковы по всем направлениям, т.е. анизотропии:

\[
\begin{align*}
\left(\mu_\tau \right)_{xy} = \left(\mu_\tau \right)_{x} = \left(\mu_\tau \right)_{y} = \left(\mu_\tau \right)_{z} = \mu_\tau; \\
\left(\lambda_\tau \right)_{xy} = \left(\lambda_\tau \right)_{x} = \left(\lambda_\tau \right)_{y} = \left(\lambda_\tau \right)_{z} = \lambda_\tau.
\end{align*}
\]

то уравнение для осредненного турбулентного движения примет вид, аналогичный уравнениям для ламинарного движения, если под коэффициентами вязкости и теплопроводности понимать их суммарные значения

\[
\begin{align*}
\mu_\tau &= \mu + \mu_\tau; \\
\lambda_\tau &= \lambda + \lambda_\tau.
\end{align*}
\]

(III) в отличие от \(\mu \) и \(\lambda \) коэффициенты \(\mu_\tau \) и \(\lambda_\tau \) зависят не только от температуры и давления, но и от скорости течения, расстояния от стенки, вертикальности стенки и других параметров.

Ввиду невозможности решения полной системы уравнений Навье – Стокса для определения коэффициентов \(\mu_\tau \) и \(\lambda_\tau \) применяют экспериментальные методы.

Для нахождения коэффициента теплопроводности при решении данной системы уравнений используют закон Бюо – Фурье

\[
\mathcal{q} = -\lambda \frac{\partial T}{\partial y} |_{x, z}.
\]
так как у поверхности твердого тела имеется слой неподвижной жидкости и тело не испускается только за счет теплопроводности. Здесь \(r_t \) — нормальный вектор поверхности тела.

Сравнивая величины плотности теплового потока, полученные по (2) и (17), найдем

\[
\alpha = \frac{Q}{T_f} = \frac{\alpha}{T_f} (\frac{\partial T}{\partial t})_{n=0}.
\]

Выражение (18) называют дифференциальным уравнением теплообмена. Оно характеризует процесс теплообмена на границах тела \(r = 0 \).

2. ОДНОМЕРНОЕ ОПИСАНИЕ ТЕЧЕНИЯ И ТЕПЛОВЫЙ В КАНАЛАХ. КОЭФФИЦИЕНТЫ ТЕПЛООБМЕНА И ГИДРАВЛИЧЕСКОГО СОПРОТИВЛЕНИЯ

Решение трехмерной системы уравнений (3) — (5) или (11) позволяет определить поля скоростей, давлений и температур в рассматриваемой области. Однако на практике при решении задач конвективного теплообмена в каналах важно знать эти поля, как правило, не требуется, а вполне достаточно знать лишь распределение по длине канала среднемассовой температуры потока, среднеквадратичную скорость, температуру стенки, а также несколько других параметров. Поскольку теоретическое решение системы (3) — (5) затруднено в связи с большим объемом вычислений и невозможностью для турбулентных течений получить аналитическое решение уравнений, наиболее целесообразным является построение инженерных методов расчета на основе одномерного описания процессов в теплообмене. Такой подход существенно упрощает математическую формулировку задачи, делая ее вполне разрешимой для численного решения. В этом случае уравнения движения энергии и неразрывности примут вид [9-11]

\[
\frac{G}{w} \frac{\partial w}{\partial x} + G \frac{\partial w}{\partial x} = F p \frac{\partial q}{\partial x} - F \frac{\partial p}{\partial x} - \nabla \cdot \frac{w}{2} \frac{\partial w}{\partial x} F; \tag{19}
\]

\[
\frac{G}{w} \frac{\partial w}{\partial x} + G \frac{\partial w}{\partial x} = U \frac{\partial q}{\partial x}; \tag{20}
\]

\[
\frac{\partial p}{\partial x} + \frac{\partial q}{\partial x} = 0. \tag{21}
\]

Здесь плотность теплового потока на стенке \(q_{w} \) определяется по (2); коэффициент гидравлического сопротивления

\[
\xi = -\frac{\partial p}{\partial x} \frac{w^2}{(\rho w^2/2) \frac{d}{r_t}}; \tag{22}
\]

где \(\delta \) — доля продольного градиента давления \(\partial p/\partial x \), рассчитываемая на трение и формирование профиля скорости (помимо этого, в практиче-
Иногда \(T_p \) называют средней по антислал температурой жидкости.

Если изменением \(c_p \) и \(\rho \) в данном сечении можно пренебречь, то формула (25) принимает вид

\[T_f = \left(\frac{wT}{wT} \right) = \frac{1}{V} \int wT \ dF, \tag{26} \]

где \(V \) — общий расход жидкости, \(\frac{d^3}{c} \); величина \(T_f \) показанна на рис. 1.

Рис. 1

Рис. 2

Получить значение среднемассовой температуры жидкости расчетным путем трудно, так как для этого необходимо знать распределение температуры и скоростей по сечению канала, а при переменных \(\rho \) и \(c_p \) их зависимости от температуры. Среднемассовую температуру потока можно получить экспериментально, для чего в канале надо поставить перемешивающее устройство, например несколько перегородок, поворачивающих поток (рис. 2). Если в этом устройстве поток адабатичен, то эта температура потока будет постоянной по сечению и равной \(T_f \). Ее можно измерить (рис. 2).

При заданной плотности теплового потока на стенке \(q_w(x) \) распределение среднемассовой температуры потока по длине канала может быть выражен в уравнении энергии (25). Для стационарного процесса

\[C_p \frac{\partial T_p}{\partial x} = V q_w, \tag{27} \]

и температура теплоносителя будет определяться как

\[T_p(x) = T_{f0} + \int_{x_0}^{x} \frac{q_w}{C_p V} \ dx, \tag{28} \]

где \(T_{f0} \) — температура жидкости на входе в канал.

Найденный для заданного сечения канала \(x \) коэффициент

\[\alpha(x) = \frac{q_w(x)}{T_p(x) - T_{f0}(x)} \tag{29} \]

называется местным коэффициентом теплоотдачи.

В общем случае коэффициент теплоотдачи может изменяться вдоль поверхности теплообмена. Для расчета теплообмена обычно нужно знать среднюю по поверхности величину коэффициента теплоотдачи.

Если значение \(\alpha \) изменяется по длине канала (но не меняется по его периметру для данного сечения), то его среднее значение \(\bar{\alpha} \) следует определять как частное от деления средней плотности теплового потока на средний температурный напор:

\[\bar{\alpha} = \frac{q_w}{\Delta T} = \frac{1}{x} \int_{x_0}^{x} \frac{q_w}{\Delta T} \ dx = \frac{1}{x} \int_{x_0}^{x} \alpha \Delta T \ dx \tag{30} \]

Здесь \(q_w \) и \(\Delta T \) — соответственно местная и средняя значения плотности теплового потока; \(\Delta T \) — мгновенное и среднее значения температурного напора, вычисляемого как разность среднемассовой температуры жидкости и температуры стенки; \(x_0 \) — длина канала, на которой ведется оценка,

Среднее значение коэффициента теплоотдачи часто определяют как среднеквадратичное:

\[\bar{\alpha} = \sqrt{\frac{1}{x} \int_{x_0}^{x} \alpha \Delta T \ dx} \tag{31} \]

Определение по формулам (30) и (31) может дать различные результаты.

При использовании формулы (30)

\[\bar{q}_w = \bar{\alpha} \Delta T = \bar{\alpha} \int_{x_0}^{x} \Delta T \ dx \tag{32} \]

и определении необходимыми для практических расчетов средней плотности теплового потока сводится к вхождению в экспериментальные формулу среднего значения \(\bar{\alpha} \) и к расчету среднеквадратичного температурного напора. Если же использовать \(\bar{\alpha} \), полученное по (31), то в расчет необходимо ввести специально подобранную среднюю температурную напор. Поэтому в настоящее время предпочтение отдается определению по формуле (30).

Поскольку при конвективном теплообмене температура жидкости переменна как по сечению канала, так и по его длине, оценение
температура на поверхности становится довольно сложной задачей. Оценка температуры жидкости по сечению канала рассмотрена ниже. Далее определяем по формуле (25) среднемассовую температуру \(T_p(x) \), используя по длине канала.

Средний температурный напор можно вычислить как среднединтегральный (с учетом (28)):

\[
\overline{T} = \pm \frac{1}{\rho} \int_0^t \left[T_{w_0}(x) - T_p(x) \right] dx = \\
= \pm \frac{1}{\rho} \int_0^t \left[T_{w_0}(x) - T_{w_0} \right] dx \\
= \frac{\int_0^t T_{w}(x) dx}{\rho} - \frac{\int_0^t \rho w x(x) dx}{c_p \rho} \tag{33}
\]

Здесь \(t \) - длина канала. В формуле (33) \(q_w > 0 \) при передаче тепла от стенки к потоку и \(q_w < 0 \) при обратном направлении теплового потока. Знак "плюс" берется при нагревании жидкости, знак "минус" - при охлаждении. Если \(q_w(x) = \text{const} \) и \(c_p = \text{const} \), то \(T_p(x) \) линейна и

\[
\frac{\overline{T}}{T} = \frac{T_{w_0} + T_{w_f}}{2}
\]

где \(T_{w_0} \) - среднемассовая температура жидкости на входе в канал.

В этом случае

\[
\overline{T} = \pm \left[\frac{1}{\rho} \int_0^t T_{w}(x) dx - \frac{T_{w_0} + T_{w_f}}{2} \right]. \tag{35}
\]

Обычно в теплообменных аппаратах плотность теплового потока меняется по длине. При этом с достаточной для практики точностью можно использовать среднелогарифмический температурный напор

\[
\overline{T}_{\text{сред}} = \frac{\Delta T_e - \Delta T_f}{\ln \left(\frac{T_{e_0} - T_{f_0}}{T_{e_f} - T_{f_f}} \right)} \tag{36}
\]

где \(T_{e_0}, T_{f_0} \) - температура стенки соответствую по входу в канал.

При \(T_{w_0} = \text{const} \) по длине канала (рис. 3) формула (36) принимает вид

\[
\overline{T}_{\text{сред}} = \frac{T_{e_0} - T_{f_0}}{\ln \left(\frac{T_{e_0} - T_{f_0}}{T_{e_f} - T_{f_f}} \right)}, \tag{37}
\]

а средняя по длине канала температура жидкости будет

\[
T_p = T_{w_0} + \overline{T}_{\text{сред}}. \tag{38}
\]

Знак "плюс" берется при охлаждении жидкости, знак "минус" - при нагревании. Использование в расчетах среднелогарифмического температурного напора предполагает, что коэффициенты теплообмена осредняются по уравнению (31).

Если \(\Delta T_e / \Delta T_f > 0,5 \), то среднее температура жидкости можно вычислить как среднелогарифмическое значение \(T_{e_0} \) и \(T_{f_0} \). При этом температурный напор находится по (36). Ошибка в определении температурного напора не превышает 4%.

Коэффициент гидравлического сопротивления \(\zeta \) получают теоретически или экспериментально путем. Для стационарного течения жидкости уравнение (19) принимает вид

\[
\Delta p = p_e - p_f = \frac{c}{2} \rho w^2 \frac{L}{d} = \rho g_x \cdot t, \tag{39}
\]

где \(\zeta = c/2 \rho w(x) dx - средний на длине \(t \) коэффициент гидравлического сопротивления; \(\rho g_x = c/2 \rho w(x) dx - средняя проекция ускорения массовых сил на продольную ось канала.

Для стационарного течения газов \(\rho = \rho w \) с учетом \(G = \rho w F \) из уравнения (19) получаем

\[
- \Delta p = G \rho w F = \rho g_x \cdot \frac{G^2}{2 P F d_a} dx = \rho g_x \cdot \frac{G^2}{2 P F d_a} \cdot \frac{L}{d_a} = \rho g_x \cdot \frac{L}{d_a} \tag{40}
\]

Интегрирование (40) по длине канала дает

\[
\Delta p = p_e - p_f = \frac{c}{2} \left(w^2_0 - w^2_0 \right) + \rho g_x \cdot \frac{G^2}{2 P F d_a} \frac{L}{d_a} = \rho g_x \cdot \frac{L}{d_a} \tag{41}
\]

где \(\rho, g_x, g \) - среднединтегральные значения соответствующих величин по длине канала; \(w_0, w_0 \) - среднестатистические скорости теплоносителя в конце и начале канала.

Используя уравнение состояния \(p = \rho \gamma \), формулу (41) можно записать так:

\[
- \Delta p = G^2 R \left(\frac{\gamma}{2 P F} \frac{L}{d_a} + \frac{w_0 - w_0}{P_e - P_f} \right) - B \frac{L}{R \gamma} \rho g_x, \tag{42}
\]

I6

Значит, "плюс" берется при охлаждении жидкости, знак "минус" - при нагревании. Использование в расчетах среднелогарифмического температурного напора предполагает, что коэффициенты теплообмена осредняются по уравнению (31).

Если \(\Delta T_e / \Delta T_f > 0,5 \), то среднее температура жидкости можно вычислить как среднелогарифмическое значение \(T_{e_0} \) и \(T_{f_0} \). При этом температурный напор находится по (36). Ошибка в определении температурного напора не превышает 4%.

Коэффициент гидравлического сопротивления \(\zeta \) получают теоретически или экспериментально путем. Для стационарного течения жидкости уравнение (19) принимает вид

\[
- \Delta p = \frac{G \rho w F}{2 P F d_a} = \rho g_x \cdot \frac{L}{d_a} \tag{40}
\]

Интегрирование (40) по длине канала дает

\[
- \Delta p = p_e - p_f = \frac{c}{2} \left(w^2_0 - w^2_0 \right) + \rho g_x \cdot \frac{G^2}{2 P F d_a} \frac{L}{d_a} = \rho g_x \cdot \frac{L}{d_a} \tag{41}
\]

где \(\rho, g_x, g \) - среднединтегральные значения соответствующих величин по длине канала; \(w_0, w_0 \) - среднестатистические скорости теплоносителя в конце и начале канала.

Используя уравнение состояния \(p = \rho \gamma \), формулу (41) можно записать так:

\[
- \Delta p = G^2 R \left(\frac{\gamma}{2 P F} \frac{L}{d_a} + \frac{w_0 - w_0}{P_e - P_f} \right) - B \frac{L}{R \gamma} \rho g_x, \tag{42}
\]
где T_v, T_i — температура потока на входе и выходе; $\frac{\rho}{\bar{\rho}}$, $\frac{m}{\bar{m}}$ — среднее по длине канала значение температуры и давления.

Так как в выражении (41) обычно незначимо $\frac{m}{\bar{m}}$, а в уравнении (42) $\frac{\rho}{\bar{\rho}}, \frac{m}{\bar{m}}, \frac{\gamma}{\theta}$ $\frac{\rho}{\bar{\rho}}$, то задачу решают методом последовательных приближений.

В эксперименте средний коэффициент гидравлического сопротивления F для жидкости определяют по формуле (39), а для газов — по формуле (41). Если ρ, m, γ по длине канала не изменяются, то потеря давления выражается как

$$\Delta \rho = \rho_0 - \rho_i = \frac{t}{2} \rho m^2.$$

(43)

3. СОЕДИНЕННОСТЬ ТЕПЛООБМЕНА И ГИДРОДИНАМИКИ

При течении теплоносителя в канале рассмотрим на примере течения его в трубе.

![Рис. 4](image)

Течение жидкости вблизи входного сечения канаала происходит посредством пленок на его стенках. Характер изменения профиля скоростей в течении жидкости на входе в канал показан на рис. 4. Во входном сечении труба ($x = 0$), если кромка его округлена, а жидкость поступает из достаточно большого резервуара, скорость течения распределена равномерно. Вследствие движения стенок трубы и прилипания жидкости к стенке в потоке возникает плененный слой загрязненной жидкости, называемый динамическим плененным слоем δ_y. На входе $\delta_y = 0$, но по мере удаления от входного сечения δ_y постепенно возрастает. Скорость жидкости в пленочном слое в направлении, перпендикулярном стенке, изменяется от нуля на стенке до значения ее в ядре потока. Поскольку ядро потока не испытывает тормозящих действий сил тяжести, распределение скорости в ядре сохраняется равномерным. По мере удаления от входа толщина пленочного слоя возрастает, размеры ядра потока сокращаются, а скорость в нем увеличивается (вследствие постоянства расхода через любое сечение трубы). На некотором расстоянии от входа пленочные слои смыкаются (для круглой трубы толщина пленочного

$(\delta_y$ становится равной ее радиусу). В этом сечении заканчивается формирование профиля скорости, и при дальнейшем увеличении расстояния от входа он не изменяется по длине (в случае изотермического движения осесимметричной жидкости).

Течение жидкости в канале, которому соответствует определенный закон распределения скорости, но не зависящий от распределения ее во входном сечении, называется гидродинамически стабилизированным течением. Расстояние от входа в канал, на котором происходит преобразование профиля скорости от входного до гидродинамически стабилизированного, называется начальным участком гидродинамической стабилизации и обозначается t_x (рис. 4). При $x > t_x$ течение является гидродинамически стабилизированным.

![Рис. 5](image)

Аналогичная картина происходит и в распределенном температурном. На рис. 5 показан характер изменения профиля температуры на входе в канал на участке трубопровода. Во входном сечении труба температура потока распределяется равномерно. При температуре стенки труба отличается от температуры потока на входе (на рис. 5 температура потока ниже температуры стенки), то возникает конвективный теплообмен и изменяется обозначение теплового потока на входе. С целью, соответствующим начальному обогреву или охлаждению, толщина теплового пограничного слоя равна нулю, но с удалением от этого сечения тепловой поток для растет и на некотором расстоянии t_x, (рис. 5) выполняется все сечение, т. е. наступает тепловая стабилизация.

Расстояние от места начала обогрева или охлаждения до точки смыкания тепловых пограничных слоев называется начальным участком тепловой стабилизации. При стабилизированном тепловом течении теплоносителя в канале ($x > t_x$) в случае, если тепловой поток по длине канала не изменяется и теплофизические свойства жидкости

![Рис. 6](image)
остается постоянным, профиль температуры, а значит, и коэффициент теплоотдачи по длине канала не изменяется. Если течение, в котором начинается обогрев или охлаждение, соотносится с входным сечением канала, то тепловой и динамический потенциальные слои формируются одновременно. Если же в начальной зоне имеется изотермический участок и обогрев или охлаждение начинается на некотором расстоянии от входа, то тепловой и потенциальный слой формируется внутри уже образовавшегося или образующегося динамического слоя (рис. 6). Таким образом, характер изменения коэффициента теплоотдачи в гидродинамическом сопротивлении зависит от начального участка в зоне стабилизированного течения и будет принципиально отличаться. На начальном участке они зависят от продольной координаты x и от расположения точки начала обогрева или охлаждения относительно входного сечения.
Для определения теплообмена и сопротивления на начальном участке канала широко применяют методы, используемые при расчете пограничных слоев [1].

4. СБИЙ ВИД КРИТЕРИАЛЬНЫХ УРАВНЕНИЙ ДЛЯ КОНВЕКТИВНОГО ТЕПЛООБМЕНА В КАНАЛАХ. ОПРЕДЕЛЕННИЕ РАЗМЕРОВ. ОПРЕДЕЛЕННАЯ ТЕМПЕРАТУРА

При экспериментальном исследовании процессов конвективного теплообмена для обобщения опытных данных и определения вида критериальных зависимостей используют метод подобия.

Для определения влияния на теплообмен в какой-либо величины оставшиеся надо сохранить неизменными, что не всегда возможно из-за большого числа переменных. При проведении эксперимента необходимо учитывать, что результаты, полученные для какого-либо процесса на конкретной установке (модели), можно перенести и на другие аналитические процессы. Эти трудности помогают разнить теорию подобия.

С помощью теории подобия размерные физические величины можно сопоставить в безразмерные комплексы, причем таким образом, что число компонент будет меньше числа величин, из которых составлены эти комплексы. Полученные безразмерные комплексы можно рассматривать как новые переменные.

При введении в уравнения безразмерных компонентов число величин под знаком функции формально сокращается, что упрощает исследование физических процессов. Кроме того, новые безразмерные переменные отражают влияние не только отдельных факторов, но и их совокупности, что позволяет легче определить физические связи в исследуемом процессе.

При проведении уравнений конвективного теплообмена в безразмерном виде помимо безразмерных температур, компонент скорости, коэффициент вязкости и времена приведения образуются безразмерные комплексы, состоящие из разнородных физических величин:

\[
\frac{\alpha r}{\lambda}; \frac{u}{c}; \frac{L}{c}; \frac{a_2}{c}; \rho \frac{c}{\rho w^2}; \frac{c}{\rho w^2};
\]

Этот комплексы называются критерием подобия или числом подобия. Здесь \(t - \) характерный или определяющий размер; \(u - \) скорость; \(a - \) скорость движения жидкости (обычно для каналов в качестве определяющего принимается среднерасходная скорость); \(\rho \) - ускорение свободного падения; \(a - \) разность температуры жидкости и стенки; \(\rho \) - переход давления в канале; \(l - \) коэффициент теплоотдачи, температуропроводности, кинематической вязкости, объемного расширения.

Безразмерный комплекс

\[
Nu = \frac{\alpha r}{\lambda}
\]

называют критерием Нуссельта. Он характеризует теплообмен на границе "стена - жидкость" и в задачах конвективного теплообмена обычно является важной величиной, поскольку в него входит определяемая величина \(\lambda \).

Безразмерный комплекс

\[
Re = \frac{\rho c}{\rho w^2}
\]

называют критерием Рейнольдса. Он характеризует соотношение сил вязкости и сил вязкости в потоке.

Безразмерный комплекс

\[
Pr = \frac{\rho c}{\rho w^2}
\]

называют критерием Пекле. Он характеризует отношение темла, переносимого конвекцией, к темлу, переносимому теплоотдачей.

Безразмерный комплекс

\[
Gr = \frac{c^3}{g \beta c^2}
\]

называют критерием Греогофра. Он характеризует соотношение между подъемными силами, возникающими в жидкости из-за разности плотностей, и силами вязкости.

Безразмерный комплекс

\[
Eu = \frac{\Delta \rho c^2}{\rho w^2}
\]

называют критерием Эйлера. Он характеризует отношение перепада давления к скоростному напору и в задачах конвективного теплообмена.
объемно является определяемой величиной. Коэффициент гидравлическо-
го сопротивления \(\gamma \) связан с критерием Эйлера \(E \) простым соотноше-
нием

\[
\gamma = \frac{\Delta p}{t} = \frac{\Delta E u}{t/\ell}
\]

(49)

Безразмерная величина \(Pr = P_{\text{реф}} / P_{\text{крив}} = \nu / \alpha \) представляет собой но-
вый критерий, называемый критерием Прандтля. Он при этом составля-
ет из физических параметров, а поэтому сам является физическим па-
раметром. Его можно записать в следующем виде:

\[
Pr = \frac{\nu/\ell}{\mu / \alpha} = \frac{\alpha \nu / \ell}{\mu}
\]

(50)

где \(\mu / \ell \) – коэффициент динамической вязкости; \(\alpha / \ell \) – теплоемкость.

Критерий Прандтля может служить мерой подобия полей темпера-
тур в скоростях.

Для газов критерий \(Pr \) практически не зависит от температуры и давления. Для конкретного газа он является величиной постоянной, определенной атомной структурой газа. В соответствии с кинетической теорией значения \(Pr \) для идеальных одно-, двух-, трех- и многомолекулярных (четырехатомных и более) газов неравномерно соответственно 0,67; 0,72; 0,66; 0,4; 0,5. Значение \(Pr \) для реальных газов несколько другое.

Для капельных жидкостей (вода, нефтепродукты) критерий \(Pr \), как правило, изменяется в пределах от 1 до 300 и в основном зависит от температуры, в основном на-за изменения вязкости. При увеличении температуры значение критерия \(Pr \) резко снижается. Например, для воды на линии насыщения при изменении температуры от кипя до 180°C критерий \(Pr \) уменьшается от 15,7 до 1. некоторые жидкости (глицерин, вяжкие масла) при низких температурах имеют значения \(Pr \), достаточ-
но высокие для их поведения.

Для жидкостных теплоносителей (масла, керосин, дистилляты, ртути) критерий \(Pr \) изменяется в пределах 0,005...0,05. Ось низкие значения \(Pr \) объясняются их высокой теплоемкостью.

Безразмерное время \(\alpha t' t'^2 \) называют критерием Фурье:

\[
Fo = \frac{\alpha t' t'^2}{t^2}
\]

(51)

Критерий \(Fo \) характеризует отношение времени протекания процесса \(t' \) к времени мгновенной температурного поля в жидкости, про-
порционального \(t^2 / \alpha \).

Произведение критерия \(Gr \) и \(Pr \) называют критерием Реяна:

\[
Ra = Gr \cdot Pr = \frac{\rho g \Delta T t^3 / \alpha}{t/\ell}
\]

(52)

В критериях \(Gr, Re, Pe, Nu, Po \) входит характерный для опреде-
лительного размер \(l \). Обычно при течении жидкости внутри трубы в ка-
честве определяющего размера принимают внутренний диаметр трубы \(d \).

Для каналов не круглой формы за определяющий размер принимают

\[
d_a = d F / U
\]

(53)

где \(F \) – площадь поперечного сечения; \(U \) – полный омываемый параметр.

Например, для плюско-канала (рис. 7, а) эквивалентный диа-
метр \(d_a = 2b (b + h) \) (\(b \) – ширина, \(h \) – высота канала). Если \(b >> h \) (плоская пластина), то \(d_a = 2h \). Для колцевого канала с внутренним диаметром \(d_a \) и наружным диаметром \(d_e \) эквивалентный диаметр \(d_a = d_e / 2 \) (рис. 7, б). Для продольно омываемого пучка труб, если считать, что число труб бесконечно, эквивалентный диаметр \(d_{eq} = [l_0 / 2 (d / d')^2 - f] d \) для шахматного расположения труб (рис. 7, в) и \(d_{eq} = [l_0 / 2 (d / d')^2 - f] d \) для коридорного расположения труб (рис. 7, г), где \(S / d \) – отношение шахматного распределения труб в пучке.

Но вами при расчете теплообмена на начальном участке канала в ка-
честве определяющего размера используют размеры от входа \(x \). Для означения выбранного определяющего размера критерий подобия часто снабжают соответствующими индексами. Например, \(Nu_{d} \) означа-
ет, что определяющим размером в критерии \(Nu \) является эквивалент-
ный диаметр \(d_a \), а \(Re_{x} \) означает, что число Рейнольдса опреде-
лено по \(x \).

Рис. 7
Для определения процессов теплообмена важно знать не только диаметр d, труб и каналов, но и некоторые другие их характеристики размеры. Например, при движении жидкости в прямой гладкой трубе в качестве дополнительного размера следует вместо ее длины l рассчитывать от точки x (в бесконечном виде $L = l/t$ и $x = x/d$). Для каналов сложной формы при изменении коэффициента теплоотдачи по параметру в редких случаях также вводится безразмерное координаты $y = y/d$, и $Z = x/d$, или безразмерные параметры L_1, \ldots, L_n, характеризующие геометрию канала. Например, для продольно смещаемых пучков труб в качестве безразмерного параметра используют отношение диаметра труб $D = d_2/d_1$.

Входящие в критерии подобия физические свойства жидкости или газа $c_v, \alpha, \lambda, \beta$ в общем случае зависят от температуры. Поэтому вводят понятие определенной температуры, т.е. температуры, при которой находится значение физических свойств, входящих в критерий. При этом критерий обозначают соответствующим индексом. Чем же в этом критерии определяют средние значения температуры потока в рассматриваемом сечении T_p и среднее значение температуры для канала в целом T_p. В этом случае соответствующие критерии обозначают следующим образом: Nu_{w}, Re_{w}, Pr_{w} (в литературе определяется температурой также обозначают Nu_{w}, Re_{w}, Pr_{w}, а в литературе эта температура обозначают Nu_{w}, Re_{w}, Pr_{w}, соответственно. В расчете свободной конвекции в качестве определяющей обычно принимают полную температуру жидкости и стенки T_{wall}, а соответствующие критерии обозначают как Nu_{wall}, Re_{wall}, Pr_{wall} (в случаях этой температуры обозначают Nu_{wall}, Re_{wall}, Pr_{wall}).

Так как введение одной определенной температуры не позволяет в общем случае учесть влияние переменности свойств среды на теплообмен, вводятся дополнительные безразмерные параметры B, $C_{f}/C_{f,ref}$, $D_{f}/D_{f,ref}$, $L_{f}/L_{f,ref}$, состоящие из физических свойств, вазитих при температурах T_p, T_{wall}.

Для газов эти свойства зависят в основном от температуры. Их соотношения имеют вид

$$B = B_{f} / B_{f,ref}, \quad C_{f} / C_{f,ref} = (T_p / T_{wall})^{n_b}, \quad D_{f} / D_{f,ref} = (T_p / T_{wall})^{n_d}, \quad L_{f} / L_{f,ref} = (T_p / T_{wall})^{n_l},$$

где n_b, n_d, n_l, n_m - постоянные, зависящие от природы газа и интервала температур.

В большинстве случаев $n_b = 1$. Поэтому в общем случае в критериях уравнения теплообмена для газов включать влияние переменности свойств среды достаточно ввести безразмерные параметры $T_p / T_{wall}, n_b, n_d, n_l, n_m$, и для конкретного газа - только T_p / T_{wall}.

Таким образом, в общем случае критериальное уравнение для местной теплоотдачи в канале имеет вид

$$Nu_{wall} = f(Re_{wall}, Pr_{wall}, Gr_{wall}, T_{wall} / T_p, n_b, n_d, n_l, n_m, X, Y, Z, L_1, \ldots, L_n).$$

(55)

В случае стационарного теплообмена в трубе зависимость (55) можно упростить:

$$Nu_{wall} = f(Re_{wall}, Pr_{wall}, Gr_{wall}, T_{wall} / T_p, n_b, n_d, n_l, n_m, X).$$

(56)

Для конкретных газов зависимость (56) можно выразить в виде

$$Nu_{wall} = f(Re_{wall}, Pr_{wall}, Gr_{wall}, T_{wall} / T_p, X),$$

или с учетом того, что $Pr_{wall} = const$, можно записать

$$Nu_{wall} = f(Re_{wall}, Gr_{wall}, T_{wall} / T_p, X).$$

(57)

При слабом влиянии свободной конвекции, что характерно для турбулентного режима течения, а также для ламинарного режима при небольших ΔT и α, критериальное уравнение принимает вид

$$Nu_{wall} = f(Re_{wall}, T_{wall} / T_p).$$

(58)

Для жидкостей с изменением температуры меняется c_p, μ, λ. Учесть влияние их изменения на теплообмен можно с помощью отношения Pr_{wall} / Pr_{ref}. Поскольку вязкое сопротивление у жидкостей изменяется коэффициент вязкости, то в этом случае Pr_{wall} / Pr_{ref} в критериальных уравнениях вместо Pr_{wall} в критериальных уравнениях включает Pr_{wall} / Pr_{ref}. Таким образом, критериальное уравнение для стационарного теплообмена в трубе будет

$$Nu_{wall} = f(Re_{wall}, Pr_{wall} / Pr_{ref}, Gr_{wall}, T_{wall} / T_p, X),$$

(60)

а при слабом влиянии свободной конвекции

$$Nu_{wall} = f(Re_{wall}, Pr_{wall} / Pr_{ref}, T_{wall} / T_p, X).$$

(61)

Однако аналитических результатов в соответствующих условиях зависит критерий Эйлера - коэффициент красного сопротивления e.

Уравнения типа (55) - (61) такие, как входящие системы разных уравнений (5) - (5), имеют бесконечное множество конкретных процессов конвективного теплообмена. Они определяют для любого процесса теплообмена между стенкой и жидкостью, удовлетворяющего принятым при этом уравнениям допущениям. Следовательно, эти уравнения определяют основные фазовые процессы, характерные для теплообмена в трубах.
ривущихся одинаковым механизмом переноса тепла. Различие отдельных физических процессов определяется с помощью условий однозначности, которые могут иметь разные числовые значения.

Сформулирование ниже условия определяет подобие физических процессов (12):

1. Подобные процессы должны быть качественно одинаковыми, т. е. они должны иметь одинаковую физическую природу и описываться одинаково по форме дифференциальных уравнений.

2. Условия однозначности подобных процессов, кроме числовых значений постоянных, должны быть одинаковыми.

3. Определяющие критерии подобия процессов должны иметь одинаковую числовую величину.

Из первого и второго условий следует, что подобные процессы должны описываться одинаковым (точносным) безразмерным дифференциальным уравнением и безразмерными геометрическими условиями.

Безразмерной формулировкой рассматриваемых подобных процессов вида (65) - (67), при этом функции \(f \) будет одной и той же для всех подобных процессов.

При соблюдении всех трех условий подобия исследуемые процессы будут зависеть от одной и тех же критериев. Пока соблюдены третье условия, поскольку функции \(f \) одинаковы, определяемые числовые критерии будут иметь одинаковую числовую величину.

Зависимости (65) - (67) получены обыкновенно эмпирическим путем, а поэтому они применимы лишь в подтвержденных опытами пределах измерений аргументов. Конкретные эмпирические зависимости для расчета коэффициентов теплообмена гидравлического сопротягнения будут рассмотрены ниже.

5. Гидравлическое сопротягнение при изохромном течении течения жидкости в трубах

Как показывают теория и опыт, характер течения жидкости вблизи входного сечения труб с существенным зависит от условий входа.

Однако на достаточном удалении от входного сечения эта зависимость исчезает. Такое течение, как уже отмечалось выше, называется гидравлически стабилизированным. Если трубопровод достаточно длинный, то, начиная с некоторого расстояния от входа, течение можно считать гидравлически стабилизированным.

Рассмотрим сначала ламинарный поток при стационарном течении несжимаемой жидкости. В этом случае

\[
\frac{\partial w_x}{\partial t} = 0; \quad w_y = w_z = 0, \]

следовательно,

\[
\frac{\partial p}{\partial y} = \frac{\partial p}{\partial z} = 0, \quad \frac{\partial w_x}{\partial x} = 0.
\]

Таким образом, давление изменяется только по длине, а скорость \(w_x \) только по сечению. Равномерное движение в цилиндрических координатах может записать в виде

\[
\mu \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial w_x}{\partial r} \right) = \frac{\partial p}{\partial x} = \text{const},
\]

(62)

где \(r \) - текущий радиус цилиндрического канала; \(\mu \) - коэффициент динамической вязкости.

Так как \(w_x = f(r) \), а \(p = g(x) \), то равенства части уравнения (62) равны одной и той же постоянной величине. Отсюда следует, что \(p \) мается вдоль канала по закону:

\[
-\frac{\partial p}{\partial x} = \frac{\partial p}{\partial r} = \text{const},
\]

(63)

где \(\rho = \rho_0 - \rho_1 \); \(t \) - длина канала.

Решение уравнения (62) с учетом (63) имеет вид

\[
w_x = \frac{-\partial p}{\partial r} \left(r^2 \right) = \frac{\partial p}{\partial r} \left(r^2 \right) + C_1 \ln r + C_2.
\]

(64)

Используя граничные условия на стенке и на оси канала

\[
\frac{\partial w_x}{\partial r} = 0 \quad \text{при} \quad r = 0, \quad w_x = 0 \quad \text{при} \quad r = 0,
\]

(65)

предположим, что постоянные интегрирования

\[
C_1 = 0; \quad C_2 = \frac{\Delta \rho}{\mu} \frac{\pi}{l}.
\]

(66)

где \(r_0 \) - внутренний радиус канала.

Следовательно, распределение скорости по сечению канала

\[
w_x = \frac{\Delta \rho}{4 \mu l} \left(r^2 - r_0^2 \right)
\]

(66)

Средняя по сечению скорость жидкости

\[
w = \frac{1}{2 \pi r_0^2} \int_0^{2\pi} \int_0^{r_0} w_x \cdot 2 \pi r dr = \frac{\Delta \rho}{2 \pi \mu l} \left(r_0^2 - r_0^2 \right) = \frac{\Delta \rho r_0^2}{8 \mu l}.
\]

(67)

Максимальная скорость (на оси канала) согласно (66) и (67) будет

\[
w_{x_{\text{max}}} = \frac{\Delta \rho r_0^2}{8 \mu l} = 2 w.
\]

(68)

Уравнение (66) с учетом (68) можно записать в виде

\[
w_x = 2 w \left(1 - \frac{r^2}{r_0^2} \right).
\]

(69)
Таким образом, скорость жидкости при движении в круглой трубе распределена по закону параболы, при этом максимальная скорость и два раза больше средней по сечению. На рис. 8 график I обозначен профиль скорости при ламинарном течении. Уравнение (67) выражает закон Пузеля. Из (67) с учетом (43) имеем

$$\frac{y}{d} = 64/Re,$$
(70)

где число $Re = \frac{u_0d}{v}$ получено по диаметру трубы d. Уравнение (70) справедливо при $Re < 2300$.

Для нахождения коэффициента гидравлического сопротивления при турбулентном стабилизированном течении несжимаемой жидкости используем универсальный закон распределения скорости в турбулентном течении $\psi = f(x)$, где $\psi = \frac{u}{V}$ и $\eta = \frac{u}{V}/\sqrt{\frac{1}{2}}$ - безразмерное число и коэффициент; $u = \sqrt{2g}/\beta$ - скорость трения, $\frac{u}{V}$ - касательное напряжение на стенке; y - расстояние от стенки.

Согласно этому закону максимальная скорость

$$\frac{u_{max}}{u} = 2,5 \ln \left(\frac{u}{V} \right) + 5,5,$$
(71)

Средняя скорость

$$w = \int_0^y \frac{u}{V} \int_0^y 2 \delta (r_0 - y) \, dy,$$
(72)

С учетом (72) и (73) получим

$$\frac{u_{max}}{u} = 2,5 \ln \left(\frac{u}{V} \right) + 5,5,$$
(74)

В выражении (76) можно представить в виде

$$\frac{u_{max}}{V} + \frac{w}{u} = 2,5 \ln \left(\frac{u}{V} \right) + 5,5.$$
(75)

Так как для трубы

$$w = \frac{\rho u}{2},$$
(76)

то с учетом (74) выражение для определения коэффициента гидравлического сопротивления при турбулентном стабилизированном течении будет иметь вид

$$\frac{1}{\sqrt{\pi}} = 2 tg (Re \sqrt{\pi}) - 2,8.$$
(76)

Полученное выражение для π хорошо подтверждается многочисленными опытами.

На рис. 8 профиль скорости для турбулентного течения (кривая 2) сопоставляется с профилем скорости для ламинарного течения (кривая I). При турбулентном течении профиль скорости более заполнен, причем тем сильнее, чем выше Re. В области развитого турбулентного течения $w/\sqrt{u_{max}} = 0,8...0,9$.

Уравнение (76) определяет π от Re в вязком виде. Наилучшие пределы зависимости π от Re в вязком виде: $\pi = 0,032 + 0,231 Re^{0,237}$, которая хорошо подтверждается экспериментом в области $Re > 10^5$.

На рис. 9 приведена зависимость π от Re. Сплошная кривая соответствует зависимости (77), а пунктирная - закону Блаузауса

$$\pi = 0,36/\sqrt{Re},$$
(78)

справедливую в области $5 \cdot 10^5 < Re < 10^5$. На этом же рисунке показана трансцендентная зависимость, соответствующая закону Пузеля (70) для ламинарного режима течения. При $Re > 10^5$ используется формула Г.К. Филенко

$$\pi = 1/(\sqrt{Re} - 1,64).$$
(79)

На начальном участке трубы профиль скорости перестраивается от входного до стабилизированного. Если жидкость поступает в трубу в достаточно большом объеме, в входные кромки трубы отклоняются, то распределение скорости во входном участке будет равномерным.

Затем профиль скорости перестраивается до стабилизированного на расстоянии l_2 (рис. 4). Обычно l_2 определяется как расстояние, на котором осевая скорость отличается от стабилизированной не более чем на 1%. Для ламинарного течения

$$l_2/\beta = 0,005 \pi.$$
(80)

Местный коэффициент сопротивления трения на участке гидродинамической стабилизации при $X < 0,001$ равен
$$\Psi \text{Re} = 6.87 \left(\frac{f}{\text{Re} \cdot \frac{a}{d}} \right)^{0.9}. \quad (61)$$

Средний коэффициент сопротивления трения на участке от входа до рассматриваемого сечения \(X_i = (x/d) - (f/\text{Re}) \) определяется при \(X_i < 0.001:\)

$$\Psi \text{Re} = 13.79 \left(\frac{f}{\text{Re} \cdot \frac{a}{d}} \right)^{0.9}. \quad (62)$$

Здесь \(\Psi \text{Re} \) и \(\Psi \) \(\text{Re} \) соответственно при \(X_i = 0 \) и \(X_i = 0.1 \) стремятся к постоянному значению, отвечающему стабилизированному течению, причём коэффициент \(\Psi \) о течении \(X_i = 0 \) при \(\text{Re} \) принимает постоянное значение при \(x = x_g \), а \(\Psi \) при \(x = 40 l \). Зависимость \(\Psi \text{Re} \) и \(\Psi \text{Re} \) от \(\text{Re} \) показаны на рис. 10. При \(x > x_g \) потеря давления в трубе составляет

$$\frac{P_x - P_a}{P_a} = \frac{\Psi \text{Re}}{\pi \sqrt{\frac{D}{2}}} + \frac{x - l}{\frac{D}{2}} = \frac{\Psi \text{Re}}{\pi \sqrt{\frac{D}{2}}} + K,$$ \quad (63)

где \(\Psi \) определяется для стабилизированного течения по формуле (70), \(x = x_g, \quad K = \text{коэффициент, равный 1.12.} \)

При турбулентном течении длина \(l_g \) зависит от условий на входе и в трубу. При радиальной скорости на входе в начале трубы, по данным С.С. Филимонова и Е.А. Хрусталёва, до расстояния

$$\langle x/d \rangle_d = 2 \cdot 10^{-7} \text{Re},$$ \quad (84)

развивается ламинарный гидродинамический поток, а затем, после перехода в турбулентный режим течения, коэффициент \(\Psi \) стабилизируется на расстоянии

$$l_g/d = 4.5 \cdot 10^{-7} \text{Re}.$$ \quad (65)

Формулы (84) и (65) справедливы для плавного входа для \(10^{4} < \text{Re} < 5 \cdot 10^{6} \). Наличие возвышенного потока на входе (струи кромки) приводит к уменьшению длины начального участка. Потеря давления на начальном участке с плавным входом при \(x/d = < (x/d)_d \) определяются зависимостью (61) для ламинарного движения.

При \(\text{Re} > 5 \cdot 10^{6} \) в зоне ламинарным режимом течения начинается, а но сравнению с \(l_g \), длина ламинарного начального участка:

$$l_g/d = 0.6 \text{Re}^{0.35},$$ \quad (66)

вместе с значением \(\Psi \) приближенно равно

$$\Psi \text{Re} = 0.83 \left(\frac{x/d}{\text{Re}^{0.35}} \right)^{0.9} \text{Re}. \quad (67)$$

Потери давления при турбулентном течении при \(x > l_g \) определяются по формуле (63), где \(K = 1.15 \), для входа с острым кромкой, и \(K = 1.16 \), для \(\text{Re} > 2 \cdot 10^{7} \).

6. ТЕПЛООБМЕН И ГИДРАУНДИНАМИЧЕСКОЕ СОПРОТИВЛЕНИЕ ПРИ НИКОСТЕРМЕЧЕСКИМ ГИДРОДИНАМИЧЕСКИМ СТРУИЛЕРОВАНИЕМ ТЕЧЕНИЯ ТЕПЛОНОСИТЕЛЯ В ТРУБАХ

Вначале рассмотрим отдельное нестационарное непостоянное течения невязкой жидкости в трубе и течения газа, а затем на том участке, где тепловой и гидравлический потоки смешиваются. При сравнении нескольких скоростей течения жидкости для практических расчетов можно принять следующие допущения: 1) диссипацией кинетической энергии можно пренебречь; 2) влияние массовых сил по сравнению с влиянием сил вязкости, давления и инерции незначительно; 3) изменение длии оси трёх плотности теплового потока, обусловленного теплопроводностью и турбулентным переносом, мало по сравнению с изменением этой величины длии радиуса; 4) изменение длии оси аксиальной нормальной напряжения, обусловленного силами вязкости и турбулентным переносом, мало по сравнению с изменением этой величины длии радиуса; 5) давление по сравнению с изменением оси канала; 6) изменение скоростного напора длии оси канала мало по сравнению с изменением статического давления.

Принимая во внимание указанные допущения, уравнения энергии и движения (II) с учетом (12) - (15) для цилиндрических координат можно записать в виде

$$\rho \frac{d}{dx} = \frac{l}{r} \frac{\partial}{\partial r} (r \varphi) ;$$ \quad (86)

$$\frac{\partial \varphi}{\partial x} = - \frac{l}{r} \frac{\partial}{\partial r} (r \varphi) ;$$ \quad (87)

$$\frac{\partial}{\partial x} = - (\lambda + \lambda_{w}) \frac{\partial \varphi}{\partial r} ,$$ \quad (88)

$$\lambda_{w} \frac{\partial \varphi}{\partial r} ,$$ \quad (89)

где \(l = \text{константа; } \varphi = \text{плотность радиального теплового потока; } \lambda_{w} = \text{консантная напряжение.} \)
Пропоноваем, что продольный градиент энтальпии $\frac{\partial e}{\partial x}$ по стене по сечению канала. Умножим обе части уравнения (89) на $r\,dr$ и с учетом этого допущения, интегрируем от 0 до r_0, получим

$$\frac{\partial i}{\partial x} = 2 \frac{q_w}{r_0} \rho_w \frac{\partial i}{\partial r},$$

где q_w - плотность теплового потока на стене; r_0 - радиус канала; ρ_w - средняя по сечению массовая скорость жидкости.

Подставив (92) в (88) и проинтегрировав (88) в интервале от 0 до r_0, получим выражение для распределения плотности теплового потока по радиусу:

$$\frac{q(i)}{q_w} = \frac{2}{R} \int_0^R \frac{\partial i}{\partial r} \rho_w R \, dR,$$

где $R = r/r_0$ - безразмерный радиус.

Поскольку по сечению канала давление постоянно и $di = c_p \,dT$, то

$$\frac{\partial i}{\partial r} = c_p \frac{\partial T}{\partial r}.$$

Подставив в (90) выражение для $\partial T/\partial r$ в (94), пишем

$$q(i) = c_p \left(1 + \frac{\lambda}{\lambda_T}
ight) \frac{\partial i}{\partial r}.$$

Из (93) и (95) можно получить выражение для радиального градиента энтальпии:

$$\frac{\partial i}{\partial R} = c_p \int_0^R \frac{\rho_w}{\lambda} \frac{\partial T}{\partial r} R \, dR,$$

(96)

Проинтегрировав уравнение (96) в интервале от R до I, получим уравнение для распределения энтальпии по радиусу канала:

$$i_0 - i = \frac{c_p}{\lambda} \int_0^R \frac{\rho_w}{\lambda} \frac{\partial T}{\partial r} R \, dR,$$

где i_0 - значение энтальпии на стенке канала.

По определению коэффициент теплоотдачи

$$h = \frac{q_w}{T_w - T_r} = \frac{q_w}{i_0 - i_T}.$$

(98)

где T_w и T_r - температура стенки и среднемассовая температура жидкости; i_T - среднемассовая энтальпия; c_p - срдняя по сечению канала теплоемкость жидкости.

Умножив обе части (97) на $2\rho_w \frac{\partial i}{\partial r} R dR$ и проинтегрировав по R от 0 до I, с учетом того, что $i_0 - i_T = 2\int i_0 - i \frac{\rho_w}{\lambda} \frac{\partial i}{\partial r} R dR$, зависимо

$$i_0 - i = 2q_w \int \left(\frac{\rho_w}{\lambda} \frac{\partial i}{\partial r} R dR\right)^2 dR,$$

(100)

Из (100) получим выражение для определения числа Нуссельта:

$$\frac{1}{N_u} = 2 \int \frac{\lambda}{c_p} \frac{\partial T}{\partial r} R dR,$$

(101)

где $N_u = \frac{d}{\lambda_x \lambda_T}$ находится по λ_T при среднемассовой температуре жидкости T_r.

Если физические свойства жидкости не зависят от температуры, выражение (101) сводится к интегралу Далама

$$\frac{1}{N_u} = 2 \frac{\int \left(\frac{\rho_w}{\lambda} \frac{\partial i}{\partial r} R dR\right)^2 dR}{\left(1 + \frac{\lambda}{\lambda_T}\right) R}.$$

(102)

Для расчета гидравлического сопротивления необходимо рассмотреть уравнения (89) и (91). При постоянных свойствах жидкости коэффициент гидравлического сопротивления

$$\gamma = -2d \frac{dp}{dx} \frac{i_0 - i_T}{\rho_w \frac{\partial i}{\partial x} (\rho_w)^2},$$

(103)

где p_w - касательное напряжение на стенке.

При переменных свойствах жидкости коэффициент гидравлического сопротивления

$$\gamma = -2d \frac{dp}{dx} \frac{\rho_w}{(\rho_w)^2} = \frac{8c_T^2 \rho_w \frac{\partial i}{\partial x}}{p_w \rho_w \frac{\partial i}{\partial x}}.$$

(104)

где p_w - плотность жидкости на стенке.
Для определения коэффициента гидравлического сопротивления используем полученное из условия постоянства давления по сечению канала соотношение
\[\frac{\varphi}{\varphi_w} = \frac{r}{r_w} = R. \]
При этом профилем скорости
\[w_x(r) = \frac{\varphi}{\varphi_w} r \int_0^r \frac{R dR}{R_x} \left(\frac{\varphi}{\varphi_w} \right) \left(1 + \frac{r}{R_w} \right), \]
где \(\mu_w \) - коэффициент динамической вязкости при температуре стенки \(T_w \), и средняя по сечению массовая скорость
\[\overline{w} = \frac{\varphi}{\varphi_w} \int_0^r \frac{R dR}{R} \left(\frac{\varphi}{\varphi_w} \right) \left(1 + \frac{r}{R_w} \right), \]
Коэффициент гидравлического сопротивления
\[\zeta = \frac{8}{Re_w} \int_0^r \frac{R dR}{R} \left(\frac{\varphi}{\varphi_w} \right) \left(1 + \frac{r}{R_w} \right), \]
где \(Re_w = \frac{\overline{w} d}{\mu_w} \) - число Рейнольдса, найденное по значению динамической вязкости при \(T_w \).
При постоянных физических свойствах жидкости (I07) принимают вид
\[\zeta = \frac{8}{Re_w} \int_0^r \frac{R dR}{R} \left(\frac{\varphi}{\varphi_w} \right) \left(1 + \frac{r}{R_w} \right), \]
Таким образом, расчет коэффициента теплоотдачи к гидравлическому сопротивлению в области стабилизированного течения жидкости сводится к вычислению интегралов (I01) и (I07). При этом для распределения турбулентных параметров \(\mu_x/\mu \) и \(\lambda_x/\lambda \) можно воспользоваться универсальной зависимостью, предложенной Рейнольдсом [3]:
\[\frac{\mu_x}{\mu} = \begin{cases} 0,4 \left(\eta - \frac{f}{\theta} \frac{\eta}{T} \right) & \text{при } 0 < \eta < 50, \\ 0,4 \times 33 \left(\eta \right) \left(0,5 + R^2 \right) \left(1 + R \right) & \text{при } \eta > 50, \end{cases} \]
в соответствии
\[\frac{\lambda_x}{\lambda} = Pr \frac{\mu_x}{\mu}. \]

При \(Pr = 1 \) существует подобие распределений коэффициентов турбулентной вязкости и теплопроводности. Влияние неизотермичности по потоку на \(\frac{\mu_x}{\mu} \) можно определить методом Годмана, в основе которого лежит гипотеза о том, что в данном случае можно использовать зависимости, полученные при постоянных свойствах жидкости, если заменить обычное переменное \(\eta = \frac{\varphi}{\varphi_w} \) на модифицированным переменным:
\[\eta^* = \left(\frac{\varphi}{\varphi_w} \right) \left(1 + \frac{r}{R_w} \right), \]
при ламинарном течении жидкости \(\lambda_x/\lambda = 0, \mu_x/\mu = 0; \overline{w}(R)/\overline{w} = 2(1 - R^2). \) Тогда согласно (I02) при постоянных свойствах жидкости получаем стабилизированное значение числа Нуссельта
\[Nu_{\infty} = \left[2 \int_0^r \left(\frac{\varphi}{\varphi_w} \right) \left(1 + \frac{r}{R_w} \right) dR \right]^m = 4,36. \]
Зависимость (I12) справедлива при \(\eta = \text{const} \) по длине трубки.
При \(T_w = \text{const} \)
\[Nu_{\infty} = 3,66. \]
Для турбулентного течения жидкости при ее постоянных свойствах и \(Re = 10^4, 0,5 - 10^5; Pr = 0,5 - 2000, \) по данным В.С. Петухова, В.А. Курганова и А.М. Гладышева, получены
\[\left(\frac{\varphi}{\varphi_w} \right) \left(\frac{8}{Re} \right) Pr = \frac{1.03 + 300}{Re} - 0,63 \left(1 + 10Pr \right) + 12,7 \frac{\mu_x}{\mu} \left(Pr \frac{\mu_x}{\mu} - 1 \right), \]
где \(\varphi \) определяется по (78) или (79).
Печеность теплофизических свойств существенно влияет на теплообмен в гидравлическом сопротивлении. Для газов влияние переменности свойств обычно учитывается введением в расчетные зависимости температурного фактора \(\varphi = T_w/T_r \). Результаты расчетов, полученные В.С. Петуховым и В.Н. Цибовским [4] для турбулентного течения воздуха и водорода в интервале температур \(T_w = 300 - 2000 \) К, \(T_w/T_r = 1.0 - 4 \) при нагревании и \(T_w/T_r = 0.37 - 1.0 \) при охлаждении, можно представить в виде
\[\varphi = \varphi^* \psi^n; \quad Nu = Nu_{\infty} \psi^n, \]
где \(\varphi_{\infty} \) и \(Nu_{\infty} \) - коэффициент сопротивления и число Нуссельта, определенные при постоянных физических свойствах жидкости соответственно по формулам (78), (79) и (I14); \(k = -0,52 \) и \(n = -0,5 \) при нагревании; \(k = -0,38 \) и \(n = -\frac{1}{3} \) при охлаждении.
Приведение расчетные зависимости хорошо согласуются с экспериментальными данными при нагревании газов и хим. при охлаждении. Согласно экспериментальным данным, полученными Н.И. Артамоновым, Е.И. Даниловым, Т.А. Дрейером, И.К. Калиным [2], тепловой фактор при охлаждении газов не влияет на теплообмен и гидравлическое сопротивление (т.е. \(k = 0 \), \(\tau = 0 \)). Расхождение результатов теоретического расчета с экспериментальными данными можно объяснить тем, что в расчете не учитывалась некоторая часть при охлаждении радиальная перегонка газа. В данном случае температура газа на сечении байпаса по ее длине снижается, что вызывает радиальную перегонку газа от стенки к ядру потока (явление, аналогичное зданию), снижающее теплообмен.

При нагревании газовых теплоносителей в случае турбулентного гидродинамического стабилизированного течения наиболее широкое диапазона по \(Re_f \) и \(T_{mg}/T_f \) охватывает эмпирическую зависимость Тейлора [3]:

\[
Nu_f = 0.023 Re_f^{0.8} Pr_f^{0.4} (T_{mg}/T_f) - (0.57 - 0.58) \varepsilon,
\]

где \(\varepsilon = \frac{\theta}{\theta_s} \) — поправка на начальный участок для \(x/d = 0.65 \ldots 50 \):

\[
Nu_f = 0.023 Re_f^{0.8} Pr_f^{0.4} e_x,
\]

при \(x/d = 50 \) \(e_x = 1 \).

Соотношения (116) и (117) получены в экспериментах с одно- и двухатомными газами, для которых зависимость вязкости и теплопроводности от температурного фактора описывается экспериментальной зависимостью для трех- и четырехатомных газов показывает, что характер зависимости теплообмена от температурного фактора для разных газов неодинаков. Для многих углеводородов эта зависимость гораздо слабее, чем для одно- и двухатомных.

В.С. Петухов и В.А. Курганов получили обобщенные расчетные формулы в виде (64), справедливые для газов с различными характе-
ром зависимости теплофизических свойств от температуры. Если задан температура стенки \(T_w = \text{const} \) (граничное условие первого рода), то обобщенная зависимость для местной теплоотдачи будет

\[
Nu_y = f\left(\frac{x}{d}, Re_f, Pr_f, \psi_w, \nu_x, n_x, n_y, n_z \right). \tag{119}
\]

При \(q_w = \text{const} \) (граничное условие второго рода) безразмерная температура стенки и число \(Nu \) определяются зависимостью

\[
\psi_w = \psi\left(\frac{x}{d}, Re_f, Pr_f, \psi_w, n_x, n_y, n_z \right). \tag{120}
\]

Здесь \(\psi_w = T_w/T_r \) — безразмерная температура стенки; \(q_w = q_{w, \text{const}} \) — безразмерная плотность теплового потока; \(T_r = \text{температура газа} \) на входе.

На основании опытных данных при нагревании веществ газов (\(\text{Ar, H}_2, \text{N}_2 \), воздух, \(\text{CO}_2, \text{NH}_3 \)) для граничных условий первого рода была получена расчетная формула

\[
Nu_y = Nu_w (\alpha/\beta)^{1/2} (C_{n_x}/C_{n_y})^{1/2} \psi_w^{1/2} (0,45 + \Phi(\chi/d)) \sqrt{(q_{w, \text{const}}/p)}, \tag{121}
\]

где \(\Phi(\chi/d) = 0,33; 0,24; 0,38; 0,65; 0,69; 0,69; 0,69; 0,69; 1,0; 2,17; 1,50 \) для \(\chi/d = 10; 30; 40; 50; 60; 70; 80; 90; 100 \) и т.д. соответственно; \(Nu_w \) — число Нуссельта, определяемое при постоянных теплофизических свойствах газа.

Формула (121) справедлива при \(Re_f > 7 	imes 10^3 \), \(g_{w, \text{const}}/p \psi_w^2 < 0,006 \ldots 0,007 \), \(\psi_w < 4 \). Обобщенная зависимость для граничных условий второго рода имеет вид

\[
Nu_y = Nu_w \exp\left\{ -K_y \left[\alpha + \Phi(\chi/d) \right] \right\}, \tag{122}
\]

где \(\alpha = 0,53 - \frac{1}{2} n_x - \frac{1}{2} n_y; \psi_w = \psi\left(\frac{x}{d}, Re_f, Pr_f, \psi_w, n_x, n_y, n_z \right); \Phi(\chi/d) = 1,45(\chi/100)^{1/2} + (\chi/1000)^{1/3}; \ K_y = q_{w, \text{const}}/Nu_w \) — параметр интенсивности подвода тепла.

Формула (122), примененная в виде

\[
\psi_w = f + K_y \exp\left\{ K_y \left[\alpha + \Phi(\chi/d) \right] \right\}, \tag{123}
\]

позволяет рассчитывать температуру стенки по заданным \(g_{w, \text{const}}, \alpha, \beta, \psi_w, n_x, n_y, n_z \).

При одноатомных газах \(\alpha = 0,30; n_x = 0,67 \) для двухатомных газов \(\alpha = 0,26; n_x = 0,70 \); для \(\text{CO}_2 \) \(\alpha = 0,09; n_x = 0,77 \); для водного пара (373...1200 K) \(\alpha = 0,013; n_x = 1,18 \); для \(\text{NH}_3 \) \(\alpha = -0,04; n_x = 0,92 \); для \(\text{CH}_4 \) (300...1200 K) \(\alpha = -0,097; n_x = 0,71 \). Формулы (122) и (123) справедливы при \(g_{w, \text{const}}/p \psi_w^2 < 0,0065 \).
ци влияние переменности физических свойств качественно такое же, как и при турбулентном. В этом случае, согласно расчетам Б. О. Легута, В. Д. Ваньковича, Б. Е. Харина, теплопотребление и сопротивление трения для воздуха и влажного обозначается зависимостью

$$
\nu_{EU} = \nu_{EU} (f + B(f + \psi)) \psi = \psi (f + C(\psi)^{k - 1}),
$$

где B, C, η, k — константы; при нагревании воздуха $B = 0,0665, \eta = 5, C = 0,23, k = 3/2$; при охлаждении воздуха $B = 0,029, \eta = 5, C = 0,23, k = 3/2$; при охлаждении воздуха $C = 0,36, \eta = 1, C = 0,36, k = 1$; ν_{EU} и ψ определяются по формулам (112) и (126) соответствственно; ν_{EU} и ψ, входящие в уравнение (115 и 126), находятся по средней температуре T_{m}. Более точные расчеты зависимоости, определяющей теплопотребление и сопротивление трения при ламинарном течении газа с переменными свойствами, приведены в [13].

У капиллярных неразмешенных жидкостей, для которых $Pr_{T} < 100$, влияние переменности физических свойств при турбулентном гидродинамическом стабилизировании течения учитывается безразмерным параметром Pr_{T}/Pr_{V}, т.е.

$$
\nu_{EU} = \nu_{EU} (Pr_{T}/Pr_{V}) \psi,
$$

где Pr_{V}, Pr_{T} определяются по T_{m} и T_{v}; $\eta = 0,25$ при нагревании; $T_{m} = T_{v}$; ν_{EU} определяется по (126).

Как видно из (127), при нагревании жидкости $Pr_{T} > Pr_{V}$ (так как $Pr_{T} > Pr_{V}$ — влажność жидкостей с ростом температуры подачи) и $\nu_{EU} > \nu_{EU}$. При охлаждении жидкости, наоборот, $Pr_{T} < Pr_{V}$ и $\nu_{EU} < \nu_{EU}$. Объясняется это следующим образом. Так как при нагревании жидкости ее вязкость у стенки меньше, чем в ядре потока, скорость у стенки увеличивается, профиль становится более выпуклым, что и приводит к росту теплоотдачи по сравнению с изотермическим течением. При охлаждении, наоборот, вязкость у стенки увеличивается, скорость уменьшается в теплоотдаче подает. На рис. 13 показан профиль скорости жидкости для изотермического течения (кривая 1), при нагревании (кривая 2) и охлаждении (кривая 3).

В этом случае коэффициент сопротивления трения

$$
\psi = \psi (\mu_{EU}/\mu_{EU}) k,
$$

где μ_{EU} и μ_{EU} — коэффициенты динамической вязкости, полученные при T_{m} и T_{v}; $k = 0,02Pr_{T}/25Pr_{V}$ при охлаждении жидкости; $h = 0,14$ при нагревании жидкости; ψ_{EU} определяется по формуле (126) или (79).

Для ламинарного стабилизированного течения капиллярной жидкости при отсутствии естественной конвекции результаты расчетов в определенных данных по теплоотдаче и гидравлическому сопротивлению обозначены зависимостями

$$
\nu_{EU} = \nu_{EU} (Pr_{EU}/Pr_{V})^{0.25} (\mu_{EU}/\mu_{EU})^{0.25} \psi = \psi (f + A(\mu_{EU}/\mu_{EU})^{0.25} - d),
$$

где ν_{EU} и ψ_{EU} — число Нуссельта и коэффициент сопротивления трения при изотермических условиях, полученные по (112) и (79); Pr_{EU} и Pr_{V} — плотности жидкости, определяемые по T_{m} и T_{v}.

Согласно [13] при нагревании $h = 1,38$ при нагревании, $h = 0,38$ и $A = 1,38$ при нагревании и охлаждении масла в нагревателе; $l = 0,026$ и $A = 38,6$ при охлаждении воды.

Теплоотдача жидкости металлов удовлетворительно обозначена зависимостью В.Н. Субботина, М.Х. Игнатова, Е.В. Немошникова

$$
\nu_{EU} = 5,0 + 0,026 Pr_{EU}^{0.6},
$$

справедливой для $Re = 10^{4}...10^{6}$; $Pr = 10^{4}...5·10^{5}$.

7. ТЕПЛООТДАЧА НА НАЧАЛЬНОМ УЧАСТКЕ ТРУБ

Начальный участок канала характеризуется тем, что в нем динамический и тепловой неподвижные слои потока жидкости еще не смешиваются, т.е. происходит формирование профиля скорости и температуры. В этих условиях коэффициенты теплоотдачи и гидравлического сопротивления являются функцией расстояния от входного сечения канала.

Рассмотрим влияние температуры стабилизатора потока, т.е. будем считать, что динамические и тепловые слои смешиваются и имеют место динамическое и тепловое смещение потока. Практически это соответствует случаю, когда на изложении (или охлаждении) канала совпадает с моментом наступления гидравлической стабилизации. В этом случае, если составляющие потока постоянно, профиль скорости по длине канала не изменяется, а профиль температуры формируется на длине l_{0}.

При ламинарном течении жидкости l_{0} зависит от граничных условий на стенке труб. Если длину l_{0} определять из условия $Nu_{EU,EU} = I,01 Nu_{EU}$, то при $q_{W} = const$ согласно [13] l_{0} будет

$$
\frac{l_{0}}{d} = 0,07 Pe.
$$

(131)
а при $\nu = \text{const}$

$$t_{\nu}/\alpha = 0,05 \text{Pe},$$

(132)

t.е. при $\nu = \text{const}$ тепловая стабилизация наступает раньше, чем при $\nu = \text{const}$. Значения коэффициентов теплообмена при ламинарном режиме течения жидкости для граничных условий $\nu = \text{const}$ и $\nu = \text{const}$ не совпадают на участке стабилизации, на ее начале (что ясно из формул (112) и (113)).

При малых значениях приведенной длины $X_{\text{дв}} = \frac{f}{\text{Pe} \frac{\alpha}{d}}$ удобно пользоваться приведенными интерполационными зависимостями [12], обеспечивающими удовлетворительную точность при практических расчетах:

при $\nu = \text{const}$

$$Nu = \begin{cases} 4,36, & \text{если } \frac{f}{\text{Pe} \frac{\alpha}{d}} \geq 0,037; \\ 6,077 \left(\frac{f}{\text{Pe} \frac{\alpha}{d}}\right)^{-1,7}, & \text{если } \frac{f}{\text{Pe} \frac{\alpha}{d}} < 10^{-4}; \\ 3,855 + \frac{0,2355}{\left(\frac{f}{\text{Pe} \frac{\alpha}{d}}\right)^{0,488}} \exp\left(5,72 \left(\frac{f}{\text{Pe} \frac{\alpha}{d}}\right)\right), & \text{если } \frac{f}{\text{Pe} \frac{\alpha}{d}} = 10^{-3}; \end{cases}$$

(133)

при $\nu = \text{const}$

$$Nu = \begin{cases} t_{\nu}/\alpha = 0,05 \text{Pe}, & \text{если } \frac{f}{\text{Pe} \frac{\alpha}{d}} < 0,037; \\ 4,36, & \text{если } \frac{f}{\text{Pe} \frac{\alpha}{d}} \geq 0,037; \\ 6,077 \left(\frac{f}{\text{Pe} \frac{\alpha}{d}}\right)^{-1,7}, & \text{если } \frac{f}{\text{Pe} \frac{\alpha}{d}} < 10^{-4}; \\ 3,855 + \frac{0,2355}{\left(\frac{f}{\text{Pe} \frac{\alpha}{d}}\right)^{0,488}} \exp\left(5,72 \left(\frac{f}{\text{Pe} \frac{\alpha}{d}}\right)\right), & \text{если } \frac{f}{\text{Pe} \frac{\alpha}{d}} = 10^{-3}; \end{cases}$$

(134)

Составляющие (133) и (134), строго говоря, справедливы для жидкостей с постоянными свойствами. Практически это соответствует режимам теплообмена, при которых переход температур в потоке жидкости незначим. Если переход температур значителен, то значение физических свойств жидкости оказывает существенное влияние на поля скоростей и температур, и для расчета теплообмена используют зависимости, полученные экспериментально.

При $\nu = \text{const}$ по длине канала экспериментальные данные удовлетворительно обобщаются зависимостями, полученными М.А. Михеевым, С.С. Филимоновым и Б.А. Крусталевым [12]:

$$Nu_{m} = t_{\nu}/\alpha = 0,05 \text{Pe},$$

(135)

Чтобы приближенно учсть зависимость α и ν от температуры, значения этих параметров в выражениях для Nu_{m} и Pe определяются при температуре $T_{w} = \frac{f}{(T_{w} + \Phi)}$. Уравнение (136) охватывает область значений $Re < 2300$, $\frac{f}{\text{Pe} \frac{\alpha}{d}} < 0,07$ и $0,04 < \nu \frac{\alpha}{d} < 0,1$ и справедливо для гидродинамически стабилизированного течения при направлении жидкостей, скорость которых убывает с ростом температуры.

При $\nu = \text{const}$ по длине канала экспериментальные данные удовлетворительно обобщаются зависимостями, полученными Б.С. Петуховым, В.А. Красновым и Х.А. Нольдт:

$$Nu_{m} = 0,05 \left(\frac{f}{\text{Pe} \frac{\alpha}{d}}\right)^{-1} \left(\frac{\alpha}{\nu \frac{\alpha}{d}}\right)^{-0,14},$$

(136)

Уравнение (136) справедливо при $\frac{f}{\text{Pe} \frac{\alpha}{d}} < 0,07$ и $0,04 < \nu \frac{\alpha}{d} < 0,1$. Как при постоянной, так и слабо меняющейся по длине труб температуре стенки.

На рис. 14 показано изменение числа Nu вдоль длины трубы при $\nu = \text{const}$ (пунктирная линия) и $\nu = \text{const}$ (штриховая линия), рассчитанное по (133) и (134). Снижение коэффициентов теплоотдачи по длине канала обусловлено ростом толщины теплового пограничного слоя (см. рис. 14) и уменьшением температуры стенки (от T_{w} до T_{w}) пропорционально коэффициенту теплоотдачи (формула (16)).

Если вход жидкости в канал совпадает с началом обогрева (или охлаждения), то процесс теплообмена протекает в гидродинамическом начальном участке, т.е. при изменении плотности скорости по длине канала. В зависимости от числа Pr числа теплового потока может быть больше (при $Pr < 1$) или меньше (при $Pr > 1$) числа теплового потока в гидродинамическом начальном участке. При $Pr = 1$ они приближенно одинаковы. Превышение длины теплового гидродинамического начального участка $\left(\frac{f}{\text{Pe} \frac{\alpha}{d}}\right)$ при ламинарном режиме течения жидкости, как следует из сравнения формул (60), (131), (132), имеет приблизительно одинаковое значение.

В зависимости от числа Pr возможны три характерных случая:

1) $Pr > 1$, $t_{w} > t_{g}$; 2) $Pr < 1$, $t_{w} < t_{g}$; 3) $Pr = 1$, $t_{w} = t_{g}$;
В первом случае профиль скорости почти по всей длине теплообменного участка близок к стабилизированному, так как \(\tau_s \gg \tau_p \). Следовательно, если длина канала \(l >> \tau_p \), то теплообмен с известным привлечением можно рассчитать по уравнениям для гидродинамически стабилизированного течения.

Во втором случае при \(\tau_s \sim \tau_p \) привлечение можно считать, что по всей длине теплообменного участка профиль скорости близок к однородному.

Во всех других случаях при расчете теплообмена необходимо учитывать изменение профиля скорости по длине.

Проблематический теоретический анализ и результаты экспериментов для ламинарного гидродинамически нестабилизированного течения жидкостей приведены в [13]. Расчетные и экспериментальные данные для воды и масла, полученные при малом ламинарном течении, удовлетворительно описываются зависимостью

\[
\text{Nu}_m = \frac{1}{2} \left(\frac{f'}{\mu_m} \right)^{1/2} \left(\frac{f''}{\mu_m} \right)^{1/2} \left(\frac{f'''}{\mu_m} \right)^{1/2}
\]

где

\[
e = 0.25 \left(\frac{f'_{\text{min}}}{\mu_m} \right)^{1/2} \left(\frac{f''_{\text{min}}}{\mu_m} \right)^{1/2} \left(\frac{f'''_{\text{min}}}{\mu_m} \right)^{1/2}
\]

Физические свойства жидкости в уравнении (137) для \(\text{Nu}_m, \mu_m, \rho_m, \tau_m \) определяются при температуре \(T_m = 0.5 \) (\(T_m + T_p \)). Уравнение (137) охватывает всю область течения, включая и ту его часть, на которой происходит формирование профиля скорости, и справедливо в диапазоне параметров \(10^4 \leq \Re_m \leq 10^5 \), \(0.7 \leq \Pr_m \leq 10^3 \), \(\text{Re}_m \leq 2000 \).

При турбулентном течении жидкости внутри труб процесс стабилизации движения и теплообмена в потоке происходит быстрее, чем при ламинарном. В условиях гидродинамической стабилизации потока длина участка теплообмена течения жидкостей для газов соответствует \(\tau_s / \delta = 20...30 \), а для ламинарных жидкостей \(\tau_s / \delta = 10...15 \).

Характер изменения коэффициента теплообмена на начальный участок труб при турбулентном течении жидкости зависит от формы входа и числа Re. На рис. 15 приведены графики изменения коэффициента теплообмена по длине труб: 1 – для острой кромки, 2 – для прямого входа и 3 – для начального необратимого участка гидродинамической стабилизации. При плавном входе жидкости в трубу коэффициент теплообмена скачком резко уменьшается, затем несколько возрастает, а потом постепенно уменьшается. На расстоянии 8...10 диаметров трубы от входа коэффициент теплообмена при плавном входе жидкости (кривая 2) и стабилизированном течении (кривая 3) становится практически одинаковым.
Возможность перехода от ламинарного режима течения к турбулентному в структуре потока в трубе зависит от целого ряда факторов: числа Re, степени вязкости потока на входе, условий входа (внешний вход, оскрых кромок), длины труб, направления в элементах турбулентного потока, заузивки входа и механических вращений. Экспериментально установлено, что при Re < 1000 любые возмущения на входе в трубу приводят к уменьшению числа Re на входе, так как все антенны, как бы они ни были, вызывают, т.е. Reₘₚ₁ = 1000 является минимальным числом Рейнольдса, при котором возможен рассмотреваемый переход. При Re > Reₘₚ₁ на входах участиях труба сохраняет ламинарный пограничный слой, независимо от условий на входе, причем с ростом Re начальное смещение ко входу ламинарный пограничный слой сохраняется на входе до определенного числа Reₛₚ₁. Если Re > Reₛₚ₁, то на входе в трубу сразу образуется турбулентный пограничный слой. Для входов с определенным Reₛₚ₁ = 2·10⁴, для планового входа Reₛₚ₁ = (1...2)·10⁵. Для Reₛₚ₁ < Re < Reₛₚ₁ характерна переменяемость течения потока, представляющая собой чередование участков с ламинарным и турбулентным структурами. Причиной переменяемости является потери устойчивости структур ламинарного течения, т.е. возникновение и развитие турбулентных пробок внутри ламинарного потока. Между этими пробками течения сохраняется ламинарным. Смена ламинарного и турбулентного состояний происходит через вертикальные промежутки времени.

Для характеристик течения в области перехода используется коэффициент переменяемости ω, показывающий, какую часть времени в данном сечении трубы существует ламинарное течения. При ω = 0 структура потока, как правило, ламинарная; при ω = 1 - полностью турбулентная. В области переменяемости 0 < ω < 1.

На рис. 18 приведены зависимости ω от расстояния от входа л и, для различных чисел Re. Коэффициент переменяемости растет по мере удаления от входа и пропорционален числу Re. Это объясняется тем, что скорость перемещения фронтов турбулентной пробки больше скорости тяжелой ее части, и поэтому она непрерывно увеличивается в размерах.

Следовательно, что переменяемость течения должна обусловливать колебания во времени местного коэффициента теплоотдачи. При подходе течения при Tₘₚ Const это приводит к колебаниям местного температурного потока, а при gᵩ = Const - к колебаниям температур стенки. На рис. 19 приведены полученные в работе [14] данные о колебаниях температур стенки гребенки в сечении y/d = 73 от начала обогрева при нагревании воды в различных Re. Колебания температуры на-

Рис. 17

6. ТЕПЛООБМЕН В ОБЛАСТИ ПЕРЕХОДА ОТ ЛАМИНАРНОГО РЕЖИМА ТЕЧЕНИЯ К ТУРБУЛЕНТНОМУ

Переход ламинарного режима течения к турбулентному в гладкой трубе при примерно одинаковом числе Reₘₚ₁ = 2300 был устроен в 1883 г. О. Рейнольдсом. Ниже приведено высказанное предположение, что Reₘₚ₁ зависит от степени возмущения потока на входе. Предположение экспериментально удалось получить Re = 5·10⁴ путем теплопереноса вращением внешних возмущений потока.

Рис. 18
В случае бесконечно тонкой стенки амплитуда колебаний ее температуры будет максимальной. Они определяются из соотношения коэффициентов теплоотдачи:

$$\frac{\Delta T_{\text{max}}}{\Delta T_{\text{min}}} = \frac{\Delta T_{\tau}}{\Delta T_{\tau}'} = \frac{\Delta T_{\tau}}{\Delta T_{\tau}'} = \frac{\Delta T_{\tau}}{\Delta T_{\tau}} = N_u / N_u'$$

где индекс "τ" соответствует турбулентному режиму течения, а индекс "τ" ламинарному.

При Re = 2400 отношение (140), полученное для чисел Nu и Nu' в стационарных условиях, равно примерно 3 для x/d = 73.

При конечной толщине стенки ΔT_{max}/ΔT_{min} уменьшается по сравнению с (140) за счет изменения теплообмена в жидкость при внесении локальных коэффициентов теплоотдачи во времени. Амплитуда и частота колебаний коэффициентов теплоотдачи зависят от числа Рейнольдса и расположения от входа в трубу. Амплитуде колебаний локальных коэффициентов теплоотдачи следует оценивать по Nu и Nu', полученными по соответствующим зависимостям при заданном числе Рейнольдса. На рис. 21 заштриховано зона возможных изменений локальных чисел Nu для переходной области. Частота колебаний лежит в пределах 0...5 Гц.

9. НЕСТАЦИОНАРНЫЙ КОНВЕКТИВНЫЙ ТЕПЛООБМЕН В ТУБУРАХ

Повышенный интерес, проявленный в настоящее время к процессам нестационарного конвекционного теплообмена в каналах, обусловлен тем, что в современных энергетических установках, теплообменных аппаратах и технологической аппаратуре, работают с высокой энергоемкостью, эти процессы характеризуются высокими скоростями изменения параметров и являются в ряде случаев определяющими.

В большинстве случаев теплообмен в каналах турбулентном, поэтому будем рассматривать нестационарный турбулентный теплообмен [9 – II].

В теоретических исследованиях используется гипотеза о квазистационарной турбулентной структуре потока, хотя турбулентная структура потока в нестационарных условиях может существенно отличаться от квазистационарной. Поэтому теоретические исследования целесообразно сочетать с экспериментальными. Необходимо отметить, что, несмотря на наличие, например, в работах [9 – II] расчетных формул, на практике до сих пор используют так называемые квазистационарные зависимости, когда для каждого момента нестационарного процесса...
теплообмен рассчитывается по формуле стационарного процесса при параметрах, значения которых равны соответствующим параметрам нестационарного процесса в рассматриваемый момент времени.

В общем случае целяю расчета нестационарного процесса теплообмена при течении теплоносителя в каналах является определение нестационарных польских скоростей и температуры в потоке теплоносителя и полей температуры и термических напряжений в материале конструкции, окружающих поток. Как правило, для потоков достаточно знать лишь среднесмещенные температуры, среднесуточную скорость и переходы давления потока.

Задача нестационарного теплообмена в каналах является сложной, так как математическая модель для описания теплообмена и гидродинамики в теплоносителе дополняется уравнениями теплопроводности, материалом конструкции и условиями сопряжения на границе между теплоносителем и стенкой. Теоретическое решение такой задачи встречает пока непредвиденные трудности, связанные с большим объемом вычислений и невозможностью получить для турбулентных нестационарных течений замкнутую систему уравнений из-за отсутствия экспериментальных данных о структуре турбулентного потока в нестационарных и невязочных условиях.

Поскольку построение методов расчета на основе решений трехмерных сопряженных задач практически невозможно, наиболее целесообразным представляется построение численных методов расчета на основе решения сопряженных задач при одномерном описании процессов в теплоносителе. Такой подход позволяет упростить математическую формулировку задачи, делая ее вполне разрешимой для численного решения на современных ЭВМ. В этом случае уравнение теплопроводности для стенок каналов добавляет дополнительные условия, зависящие от температуры и гидравлического сопротивления. Это уравнение, как правило, можно получить только экспериментальным путем. Коэффициент теплоотдачи

\[\dot{q}(x, t) = \frac{q_{w}(x, t)}{T_w(x, t) - T_e(x, t)}, \quad \text{(141)} \]

где \(q_{w} \) — плотность теплового потока на стенке; \(T_w \) — температура стенки; \(T_e \) — среднесуточная температура потока в рассматриваемом сечении канала \(x \) в момент времени \(t \).

В нестационарных условиях теплообмен определяется не только параметрами, характеризующими стационарный теплообмен (числом Рейнольдса и Прандтля, расстоянием от входа \(x/d \), параметрами, учитываемыми переменность свойств теплоносителя), но и законами изменения граничных условий: расхода \(G \), температуры стенки \(T_w \), плотности теплового потока на ней \(q_{w} \). При турбулентном течении для подводного теплообмена практически реализуемым законом изменения этих условий можно ограничиться линейными членами разложения в ряде вклада нестационарности на теплообмен с учетом первых производных от \(T_w \) или \(q_{w} \) по времени и длине и от расхода по времени для соответствующих образцовых параметров.

В общем случае для нестационарного турбулентного течения в канале зависимость для числа Прандтля имеет вид

\[Nu_f = \frac{x}{d} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right), \quad \text{(142)} \]

где \(K_v = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \)

и \(K_w = \frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} \)

учитывает влияние \(T_w (x) \) на конвективный теплообмен за счёт изменения нестационарной теплопроводности; \(K_w = \frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} \)

учитывает влияние изменения \(q_{w} \) по длине канала (аналогично \(T_w \) зависимость \(q_{w} \) можно получить через \(\frac{\partial q_{w}}{\partial x} \)); \(K_v = \frac{\partial v}{\partial x} + \frac{\partial v}{\partial y} \)

учитывает влияние на нестационарный теплообмен изменения турбулентности структуры потока при изменении \(T_w \) и постепенном изменении \(q_{w} \) за счёт изменения \(T_w \) и элемента \(\frac{\partial q_{w}}{\partial x} \).

Численные расчеты [11], выполненные для стационарного нагрева воздуха при \(Re_f = \{1, 1.6, 2, 2.3, 7\} \cdot 10^5 \), \(T_w / T_0 = 1.0 \cdot 2.2 \), \(K_v = K_w = 0 \), \(1.0 \times 0.01 \), \(1.0 \times 0.01 \), с учетом переменности свойств газа, и эксперимент, проведенный в условиях, соответствующих численной модели \(Re_f = \{2, 3, 7, 7.3, 7.4\} \cdot 10^5 \), \(T_w / T_0 = 1.0 \times 2.2 \), \(K_v = 0.05 \), \(0.06 \times 0.01 \), показали, что при реальных значениях \(K_v \) его влияние на теплообмен неустойчиво и поэтому не учитывалось при обобщении опытных данных.

Изменение \(T_w \) по времени влияет на интенсивность теплообмена в результате перестройки профиля температуры, вызванной наложением нестационарной нестационарностью на стационарный конвективный теплообмен. При \(\frac{\partial T}{\partial x} = 0 \) теплообмен в стационарной \(K = \frac{Nu}{Nu_0} > 1, \)

где \(Nu_0 \) — константное значение \(Nu \), а при \(\frac{\partial T}{\partial x} < 0 \) число \(K < 1 \). Расчет этого влияния для турбулентного течения воздуха

51
на участке гидродинамической стабилизации выполняются в предположении, что структура турбулентности квазистационарна с учетом перемены свойств газа. Считаем также, что расход газа постоянен, а \(q_{\infty}(x, t) \) возрастает по времени.

Уравнение энергии

\[
\rho \frac{D}{Dx} + \rho v \frac{D}{Dx} = \frac{1}{r} \frac{D}{Dx} \left[u \rho c_p \left(\frac{D}{Dx} + \frac{D}{Dy} \right) \right] \tag{143}
\]

решено численно при поддержании предварительных расчетах аппроксимации распределения плотности теплового потока по радиусу полымом

\[
\rho = \left(\lambda + \rho \alpha \right) \left(\frac{D}{Dy} + \frac{D}{Dx} \right) = \rho \left(\frac{D}{Dy} + \frac{D}{Dx} \right) = \rho \left(\alpha \rho + \rho \alpha R + \rho \alpha R^2 + \rho \alpha R^3 \right). \tag{144}
\]

Здесь \(r \) – радиус; \(i \) – энтальпия; \(w_x \) – продольная скорость; \(c_p \) – коэффициент турбулентной температуропроводности; \(R = \rho / \rho_0 \); \(\rho_0 \) – радиус трубки.

Турбулентное состояние потока рассчитывалось по формуле Гей-Хардта для учета переменности свойств газа безразмерное значение от степени \(e = \sqrt{\frac{32}{3}} Re \) определяемое по значениям \(\rho \) и \(\mu \) при \(T \). Рассчитано схема схема интегрированием среднемомоментной энтальпии с ее изменением, полученным решением основного уравнения энергии.

Было показано, что благодаря высокой температуропроводности газа влияние нестационарной теплопроводности выражено, и его расчетное значение существенно меньше, чем полученное в эксперименте. На рис. 22 представлена зависимость нестационарного теплообмена от параметра \(\alpha \) для различных значений нестационарной теплопроводности

\[
K_{\rho} = \frac{D}{Dx} \left(\frac{D}{Dy} - \frac{D}{Dx} \right) \sqrt{\frac{\alpha}{\rho}} \tag{145}
\]

На рисунке 1, 2, экспериментальные данные; 3, 4 – расчет по квазистационарной турбулентности; 5, 6 – расчет по нестационарной турбулентности; для 1, 3, 5 число \(Re = 10^3 \); для 2, 4, 6 число \(Re = 4,4 \times 10^4 \). Для жидкостей из-за более низкой их температуропроводности этот эффект значительнее, однако экспериментальные данные также расходятся с расчетами. Разложение обусловлено изменениями турбулентной структуры при прогреве или охлаждении пристенного слоя. При прогреве пристенного слоя коэффициент турбулентной теплопроводности \(\lambda \) возрастает, а при охлаждении падает.

При анализе этого явления использовались результаты, полученные в работах Крыка, Бродя, Клейна и других авторов, в которых показано, что в пристенном слое в зоне \(5 < \eta < 15 \), периодически возникают вихревые структуры, вызываемые в отдельные слои. Взаимодействие этих вихрей с основным потоком, главным образом в зоне \(\eta > 20 \), и порождает турбулентность, причем интенсивность и средняя частота возникновения вихрей является функцией параметров исходного течения.

Можно предположить, что в условиях нестационарного прогрева потока при \(\partial T_{\rho} / \partial x > 0 \) зависимость массы газа от стенки увеличивается с ускорением и рассчитывается, что увеличивает поперечную энергию ее взаимодействия с большими скольжением массы относительно холодного газа и приводит к более интенсивному течению нестационарности. При постепенном изменении вязкости и температуры газа изменение \(\alpha_{\infty} \) будет тем значительнее, чем большая коэффициент \(\beta_{\infty} \) объемного расширения газа, находящегося у стенки, и локальное изменение температуры потока \(\Delta T = T_{\rho} - \beta_{\infty} \) за время между следующим друг за другом возникновениями вихревых структур \(\Delta T \) для соответствующих безразмерных параметров \(K_{\rho} \) или \(K_{\rho}^{**} \):

\[
K_{\rho}^{**} = \frac{\partial T_{\rho}}{\partial x} \beta_{\infty} \frac{d}{d} \sqrt{\frac{\alpha}{\rho}} = K_{\rho} \sqrt{\frac{Re \cdot Pr}{\rho}}. \tag{146}
\]

Для газов \(\beta_{\infty} = \frac{1}{T_{\rho}} \). Входящие в \(K_{\rho}, K_{\rho}^{**}, K_{\rho}^{**}, K_{\rho}, K_{\rho}^{**} \), значения \(\rho, c_p, \alpha, \beta_{\infty} \) определяются по \(T_{\rho} \). Экспериментальные данные, что влияние \(x / d \) на нестационарный теплообмен \(Nu_{\rho} \), такое же, как и на квазистационарный \(Nu_{\rho} \). Переменность свойств жидкостей, однако, имеет на \(Nu_{\rho} \) и \(Nu_{\rho} \), поэтому для них

\[
K = Nu_{\rho} = f(Re, Pr, T_{\rho}, K_{\rho}, K_{\rho}^{**}, K_{\rho}^{**}) \tag{147}
\]

или при раздельном учете влияния на нестационарный теплообмен параметров \(K_{\rho}, K_{\rho}^{**}, K_{\rho}^{**}, K_{\rho} \):

\[
K = f + \Delta K_{\rho}(K_{\rho}, K_{\rho}, K_{\rho}, K_{\rho}) + \Delta K_{\rho}(K_{\rho}^{**}, K_{\rho}^{**}, K_{\rho}^{**}, K_{\rho}) + \Delta K_{\rho}(K_{\rho}, K_{\rho}, K_{\rho}) + \Delta K_{\rho}(K_{\rho}, K_{\rho}, K_{\rho}), \tag{148}
\]

для газов \(Pr = const \), а влияние переменности их свойств, учитываемое \(T_{\rho} / T_{\rho} \), различное для \(Nu_{\rho} \) и \(Nu_{\rho} \), поэтому

\[
K = f(Re, T_{\rho} / T_{\rho}, K_{\rho}, K_{\rho}, K_{\rho}) + \Delta K_{\rho}(K_{\rho}, K_{\rho}, K_{\rho}) + \Delta K_{\rho}(K_{\rho}, K_{\rho}, K_{\rho}) + \Delta K_{\rho}(K_{\rho}, K_{\rho}, K_{\rho}). \tag{149}
\]
Здесь K — отношение нестационарного коэффициента теплоотдачи к квазистационарному; ΔK_r — изменение K, обусловленное наложением нестационарной теплопроводности на стационарный конвективный теплообмен; ΔK_x — изменение K, обусловленное перестройкой турбулентной структуры потока при возрастании T_w и $G = const$; ΔK_γ — изменение K при переменном расходе.

Для расчета нестационарного теплообмена при течении газов в жидкостях в трубах и изменения во времени теплообмена в стенах каналов и расхода теплоносителя в [9 — 11] получены эмпирические зависимости.

Зависимости для ΔK_r, при различных законах изменения q_w, имеют вид:

$$\Delta K_r = 26.6 (K_g \gamma^{0.9})^{0.6} / R_g \cdot Pr_f^{0.6}$$

при $Re_g = 10^4...10^6$, $Pr_f = 1...10$, $K_g = 0...1000$, $x/a = 3.6$...197 и вид:

$$\Delta K_r = f \left[1 - 2.4 K_g \gamma^{0.9} / Re_g \cdot Pr_f^{0.6} \right] - f$$

при $K_g = 2000...0$, $Re_g = 10^4...10^5$, $Pr_f = 1...10$. При $K_g > 20$, $\Delta K_r > 0$, при $K_g < 0$, $\Delta K_r < 0$.

Эмпирические формулы для ΔK_x и ΔK_γ при нагревании газов для различных законов изменения T_w и G имеют вид:

1) при росте температуры стены

$$\Delta K_x = 1.25 \left[1 - \exp \left(-0.5 T_w \gamma^{0.5} \right) \right] (4.65 - 2.2 \cdot 10^5 K_g \gamma^{0.5})$$

при $K_g = 0...10^4$, $Pr_f = 1...10$, $T_w / T_f = 1...1.7$;

$$\Delta K_x = 1.25 \left[1 - \exp \left(-0.5 T_w \gamma^{0.5} \right) \right] (4.65 - 2.2 \cdot 10^5 K_g \gamma^{0.5})$$

при $K_g = 0...10^4$, $Pr_f = 1...10$, $T_w / T_f = 1...1.7$;

2) при снижении температуры стены

$$\Delta K_\gamma = -1.25 \left[1 - \exp \left(-0.5 T_w \gamma^{0.5} \right) \right] (4.65 - 2.2 \cdot 10^5 K_g \gamma^{0.5})$$

при $K_g = 0...10^4$, $Pr_f = 1...10$, $T_w / T_f = 1...1.7$.

На рис. 24 представлены зависимости ΔK_γ от K_g при различных Re_f и Pr_f: $I - 6$ — соответственно $Re_f \cdot 10^4 = 1...2; 2...3; 3...4$;
4...5; 5...6; 6...7) и \(\tau_\text{ср} / \tau_\text{ср} \) в случае увеличения (\(\alpha\)) или уменьшения (\(\beta\)) расхода нагреваемого газа.

![Diagram](image)

Проведенные эксперименты позволили оценить влияние изменения \(\tau_\text{ср} \) на турбулентную структуру потока. Предполагалось, что в нестационарных условиях стационарное распределение турбулентной температурности сохраняется, но что безразмерные расстояния от стенки \(t_\text{n} \) входят в эмпирически выраженный \(B : B > 0 \) при \(K_\text{ср} > 0 \).

При увеличении \(\tau_\text{ср} \), значение \(\lambda_\text{ср} / \lambda \) (\(\lambda_\text{ср} \) — коэффициент турбулентной температурности) возрастает: в промежуточной области — в 2...4 раза при умеренном росте \(K \), а в ядре — на 20...50%.

На рис. 25 показано распределение турбулентной температурности по радиусу трубы при расчете с учетом нестационарности в I и II квазистационарном приближении. На рисунке \(a = \text{Re}_p = 2,5 \times 10^5\), \(\tau_\text{ср} / \tau_\text{ср} = 1,12\), \(K_\text{ср} = 1,26 \times 10^{-4}\), \(K = 1,29\); \(b = \text{Re}_p = 5,5 \times 10^4\), \(\tau_\text{ср} / \tau_\text{ср} = 1,16\), \(K_\text{ср} = 1,1 \times 10^{-4}\), \(K = 1,45\).

Полученные зависимости для \(\Delta K_i \) и \(\Delta K_2 \) позволяют установить соотношение между ними при изменении \(\tau_\text{ср} \) и \(q_\text{ср} \) в случае нагревания газа в трубе. Для числа из (148), (150) и (151), при увеличении тепловой нагрузки и \(\text{Re}_p = \text{const} \),

\[
\Delta K_i = C_i (K_i)^{0,75},
\]

\[
\Delta K_2 = C_2 (K_2)^{0,75},
\]

где \(n = 1,706...1,405 \) при измерении \(\text{Re}_p \) от \(7 \times 10^5 \) до \(2 \times 10^5 \). С учетом зависимости для \(K_i \) и \(K_2 \) в выражении \(G = 0,35 \text{см} \text{мм} \text{кг}^{-1} \text{моль}^{-1} \text{кг}^{-1} \) получим, что при прочих равных условиях

\[
\Delta K_i / \Delta K_2 = C d^{0,75},
\]

где при \(\text{Re}_p = 7 \times 10^5...2 \times 10^5\), \(C = 0,52, \ldots 0,8075\).

Таким образом, отношение \(\Delta K_i / \Delta K_2 \) тем больше, чем больше диаметр трубы. Обычно в теплотехнических аппаратах \(d = 10...20 \text{мм}\), поэтому \(\Delta K_i / \Delta K_2 \) (рис. 23) можно считать, что \(\Delta K_i / \Delta K_2 \approx 0 \), т.е. сечение \(K \) от 1 определяется изменением турбулентной структуры потока. Для больших \(C \) (например, при расчете нестационарного теплообмена в газопроводах) \(\Delta K_i \) нужно учитывать.

Значения для \(\Delta K_i \) и \(\Delta K_2 \) были получены при нагревании жидкости для ряда значений изменения \(\tau_\text{ср} \) и \(G \).

При измерении тепловой нагрузки \(\Delta K_i \) тем больше, чем больше \(K_2 \), чем меньше \(\text{Re}_p \), не зависит от \(\text{Pr} \), при \(\text{Pr} = 3...10\) особенности следующие формулами:

\[
\Delta K_i = \left(\frac{1,7 \times 10^5}{\text{Re}_p^{0,75}}\right) K_2^{0,3},
\]

при \(\text{Re}_p = 4 \times 10^3...2 \times 10^4\), \(K_2 = 0...0,7 \times 10^{-5}\);

\[
\Delta K_i = \left(\frac{8,29 \times 10^4}{\text{Re}_p^{0,75}}\right) K_2^{0,3},
\]

при \(\text{Re}_p = 2 \times 10^4...2 \times 10^5\), \(K_2 = 0...0,7 \times 10^{-5}\);

\[
\Delta K_i = (1 - 1,7 \times 10^5 \text{Re}_p^{0,3})^{0,75} f - 1\]

при \(\text{Re}_p = 4 \times 10^3...2 \times 10^4\), \(K_2 = 0...0,7 \times 10^{-5}\);

\[
\Delta K_i = (1 - 8,29 \times 10^4 \text{Re}_p^{0,3})^{0,75} f - 1\]

при \(\text{Re}_p = 4 \times 10^3...2 \times 10^4\), \(K_2 = 0...0,7 \times 10^{-5}\).

Для жидкостей \(\Delta K_2 \) и \(\Delta K_2 \) совпадают. Отношение \(\Delta K_i / \Delta K_2 \) уменьшается с ростом диаметра трубы при одинаковых \(\text{Re}_p \) и \(\tau_\text{ср} \), \(\tau_\text{ср} \), \(\text{Re}_p \), \(\text{Pr} \), поэтому зависимость \(K \) от \(K_2 \) или \(K_2 \) не является единственной для труб равного диаметра и требуется введение двух параметров тепловой нестационарности.

При одинаковых \(K_2 \), \(\text{Re}_p \) значения \(\Delta K_2 \) для жидкости и газа (при \(\tau_\text{ср} / \tau_\text{ср} \) II) практически совпадают, хотя их коэффициенты объемного расширения \(\rho \) различаются до 40 раз. На рис. 26 сопоставлены данные о влиянии на нестационарный тепловом изменении турбулентной структуры потока при нагревании жидкости (I — вода при
Проведенные эксперименты и их анализ показали, что влияние изменения турбулентной структуры потока на нестационарный теплообмен существенно как для газов, так и для жидкостей. ΔK₂ определяется из экспериментальных значений K в найденных при G = Const величин ΔK₁ и ΔK₂ ΔK₁ для Pr = 3...12, Pr = 2.5, 5, 10, 20, 50, 100, 1000, 0, 6...160 обобщается следующими формулами:

ΔK₁ = (6·10^(-9) K₂ + 5,6·10^(-6) Reₜ) + 7·10^(-4) K₂ + 0,071 (165) при Pr = (6...12)·10³, K₂ = 0...400;
ΔK₂ = (19,5·10^(-6) K₂ + 2·10^(-2) Kₜ₀ + 2,4·10^(-2) Kₜ₀ + 0,236 (166) при Pr = (6...12)·10³, Kₜ₀ = 200...0;
ΔKₚ = (2,43·10^(-2) K₂ + 5,67·10^(-2) Reₜ) - (3,57·10^(-2) K₂ - 0,63) (107) при Pr = (12...20)·10³, Kₚ = -100...200;
ΔKₚ = (3,91·10^(-6) K₂ + 2,173·10^(-6) Reₜ) + 1,13·10^(-3) K₂ + 0,07 (168) при Pr = (20...60)·10³, K₂ = 0...200;
ΔKₚ = (-5,6·10^(-9) K₂ + 2,75·10^(-6) Reₜ) + 2,8·10^(-3) K₂ + 0,07 (169) при Pr = (20...60)·10³, K₂ = -100...0.

При Reₜ = (1,5...6)·10⁴ ΔKₚ = 0 при K₂ = 0 и ΔKₚ < 0 при K₂ < 0.

На рис. 27 показаны зависимости ΔK₁ от Reₜ и K₂ при упоминавшем (K₂ > 0) и уменьшении (K₂ < 0) расхода нагреваемой жидкости (I = 7 — соответственно K₂ = 400, 200, 100, 50, -50, -100, -200).

При снижении Reₜ влияние скоростной нестационарности на теплообмен уменьшается, а затем становится обратным: при ускорении потока теплообмен уменьшается, а при замедлении увеличивается по сравнению с неновационарным.

Возможно, при проводении реальных расчетов Tₚ и ΔTₚ/Δt заранее неизвестны (так же, как и Δqₚ/Δt, Δqₚ/Δt), задачу решают методом последовательных приближений. В первом приближении коэффициенты теплообмена определяются по неновационным эмпирическим зависимостям. Затем в первом приближении находят Tₚ и ΔTₚ/Δt, Kₚ, qₚ, qₚ/Δt, qₚ, и нестационарный коэффициент теплообмена. Это позволяет сделать следующие приближения при решении задачи.

Надо отметить, что представленные в настоящем разделе эмпирические формулы дают возможность при заданной точности расчета коэффициента теплообмена определить допустимые скорости изменения параметров (ΔTₚ/Δt, Δqₚ/Δt, Δqₚ/Δt), которые применимы к неновационным зависимостям, которые используют расчет теплообмен.

10. ТЕПЛООБМЕН И ГИДРАВЛИЧЕСКОЕ СОПРОТИВЛЕНИЕ В ИНЖЕКТИВНОЙ РАЧЕЛЕСИ?

В настоящее время широко применяются теплообменные аппараты с каналами, имеющими нерегулярное поперечное сечение. Это позволяет изменять пучко труб, кольцевые каналы, плоские веи, прямоугольные и треугольные каналы, а также каналы более сложного поперечного сечения. Некоторые из этих каналов показаны на рис. 7. Во многом из них теплообмен осуществляется не через всю охлаждаемую поверхности...
нотой. Часто плотность тепловых потоков на различных поверхностях оказывается неоднородной. Например, на практике встречаются прямоугольные каналы с одной или двумя обогревающими поверхностями, колцевые каналы с внутренним или внешним обогревом, а также с двухсторонним обогревом с разными плотностями тепловых потоков, продольное охлаждение пучка термостойких, частично участвующих в теплообмене.

Долгое время теплообмен и гидравлическое сопротивление продолжали оставаться такими, какими были в начале, даже в системах с центральным баком в период, когда были установлены два датчика охлаждения. Такие системы позволяли учесть влияние теплообмена и гидравлического сопротивления в конкретных условиях работы системы.

При использовании овальных пучков, как правило, используются в овальных пучках, гидравлическое сопротивление и теплообмен в них также зависят от отношения продольного размера к овальной пучке при боковом сечении, а также от величины и типа теплообменных элементов, используемых в овальных пучках. В овальных пучках, где продольное сечение является прямоугольным, гидравлическое сопротивление и теплообмен имеют минимальные значения, а в овальных пучках, где продольное сечение является усеченным, гидравлическое сопротивление и теплообмен имеют максимальные значения.

При турбулентном течении на овальной пучке возникают вихри, которые вызывают повышенное гидравлическое сопротивление и теплообмен. В овальных пучках, где продольное сечение является усеченным, гидравлическое сопротивление и теплообмен имеют максимальные значения, а в овальных пучках, где продольное сечение является прямоугольным, гидравлическое сопротивление и теплообмен имеют минимальные значения.

При турбулентном течении на овальной пучке возникают вихри, которые вызывают повышенное гидравлическое сопротивление и теплообмен. В овальных пучках, где продольное сечение является усеченным, гидравлическое сопротивление и теплообмен имеют максимальные значения, а в овальных пучках, где продольное сечение является прямоугольным, гидравлическое сопротивление и теплообмен имеют минимальные значения.
скорости (адиабат периметра канала). В направлении, перпендикулярном периметру канала, конвекционный перенос этим вихрям играет незначительную роль вследствие большого градиента скорости.

Закон распределения температуры по периметру некруглого канала зависит не только от гидродинамики и физических свойств теплоносителя, но и от стенки: ее конфигурации, размеров, физических свойств, распределения в ней источников тепла. Это делает данную задачу сопряженной, т.е. вынуждает рассматривать уравнения энергии, движения и неравномерности для потока совместно с уравнением теплопроводности для стенки канала и условием сопряжения - равенством температур и тепловых потоков на границе с двуми ее сторонами.

Решение сопряженных задач весьма сложно, оно должно содержать дополнительный параметр

$$
\phi = \lambda_w \delta_w / \lambda_z \delta_z, \tag{170}
$$

где λ_w, λ_z - коэффициенты теплопроводности материала стенки и теплоносителя; δ_w, δ_z - толщина стенки.

При переменной по периметру температуре стенки возможно появление перетечек тепла как по самой стенке (пропорциональной $\lambda_w \delta_w$), так и по теплоносителю (пропорциональной $\lambda_z \delta_z$). Параметр ϕ характеризует наличие этих перетечек. При $\phi = 0$ перетека тепла по стенке отсутствует; это соответствует граничному случаю $q_{w,\text{const}}$ по периметру. При $\phi \to \infty$ ($\lambda_w \to \infty$) перетекание тепла прекращается; это соответствует условию $q_{w,\text{const}}$ по периметру. В реальных каналах параметр ϕ имеет некоторое промежуточное значение.

Реальный путь решения сопряженных задач заключается в разделении ее на две (для потока в и для стенки) путем введения понятия местного коэффициента теплопотерь

$$
\alpha(x, y_w, z_w) = \frac{q_{w,\text{const}}(x, y_w, z_w)}{T_w(x, y_w, z_w) - T_f(x)}, \tag{171}
$$

учитывающего изменение теплопотерь (а следовательно, и плотности теплового потока на поверхности стенки $q_{w,\text{const}}$), температуры стенки T_w не только по длине канала, но и в центре сечения x в любой точке (y_w, z_w) по периметру канала.

При развитых турбулентных течениях в каналах и возможных гравитационных условиях коэффициент теплопотерь $\alpha(x, y_w, z_w)$, определенный по (171), сложно вписать не только от преобразований, но и от распределения T_w по периметру канала, что делает целесообразным использование коэффициента $\alpha(x, y_w, z_w)$ и соответствующего числа Нуссельта $N_u = \alpha(x, y_w, z_w) d_p / \lambda_z$ - в практических расчетах. Распределение коэффициента теплопотерь по длине и периметру канала при развитом турбулентном течении определяется главным образом гидродинамическим потоком.

Влияние зависимости для $\alpha(x, y_w, z_w)$ и коэффициента гидравлического сопротивления канала будет найдено, то математическая постановка указанной выше сопряженной задачи заметно упрощается.

Из этого следует, что уравнение теплопередачи (19) - (21) записано без потерь на трение в коэффициентах градиента температуры у стенки и снимаею уравнение для температуры теплоносителя у стенки (23).

Рассмотрим конкретные расчетные зависимости для некоторых типов некруглых каналов. Для продольно охлаждаемых пучков труб, когда число их велико (т.е. когда влияние конуса мал), результаты расчетов коэффициентов гидравлического сопротивления и средней теплоты, отнесенные к стабилизированному ламинарному течению, представлены на рис. 30 и 31. На рис. 30 приведены данные по сопротивлению для несогласного 1 и корпоратора 2 расположения труб в зависимости от относительного шага S / D_n (см. рис. 7а), а на рис. 31 - данные по теплопотерям для плашменных пучков при $q_{w,\text{const}}$ по периметру (1) и $T_w = \text{const}$ (2). Как видно из рисунка, $N_u_{d_{in}}$ и ξ возрастает при увеличении S / D_n, если в качестве определяющего размера использовать эквивалентный диаметр. В таких пучках наблюдается существенная разница в средних коэффициентах теплопотерь при $q_{w,\text{const}} = \text{const}$ и $T_w = \text{const}$, причем в первом случае теплообмен выше.

![Рис. 30](image1)

При турбулентном режиме течения опытные данные по гидравлическому сопротивлению и теплообмену также расходуют на длину для труб при расчете по эквивалентному диаметру. На рис. 32 представлено изменение отношения ξ / ξ_{p} для продольно охлаждаемых плашменных
пучков труб (\(\gamma_{\text{tr}} \) — коэффициент гидравлического сопротивления труб) от \(S/D_t \). Точкиами показаны опыты данные различных авторов, а линией — зависимость, полученная П.А. Уманцевым и [4]:

\[
\frac{f}{f_{\text{tr}}} = 0.57 + 0.08(S/D_t - 1) + 0.53 \left[1 - \exp\left(- \alpha \right) \right],
\]

где

\[
\alpha = \begin{cases}
0.58 \left[1 - \exp\left(-70(S/D_t - 1) \right) \right] + 0.2(S/D_t - 1) & \text{для } S/D_t < 1.02; \\
0.58 + 0.2(S/D_t - 1) & \text{для } S/D_t > 1.02.
\end{cases}
\]

Для кордированных пучков [4]

\[
\frac{f}{f_{\text{tr}}} = 0.59 + 0.16(S/D_t - 1) + 0.52 \left[1 - \exp\left(-10(S/D_t - 1) \right) \right].
\]

Зависимость (172) и (173) справедливы при \(f < S/D_t < 10 \) и \(2 \times 10^4 < Re < 5 \times 10^5 \).

Переход к развитому турбулентному течению в пучках по \(Re \) задерживается тем дольше, чем больше \(S/D_t \). Так, в пучке с \(S/D_t = 1.16 \) Re,трд = \(1.3 \times 10^4 \), при \(S/D_t = 1.2 \) Re,трд = \(2 \times 10^4 \), при \(S/D_t = 1.5 \) Re,трд = \(3 \times 10^4 \).

Для развитого турбулентного течения с значительным расположением пучков труб при \(S/D_t = 1.1...1.5 \) справедлива зависимость [3]

\[
Nu = 0.032 S/D_t - 0.22(Re)^{0.3} Pr_m^{0.3},
\]

изображенная на рис. 33 в виде сплошной линии. Точками обозначены опытные данные различных авторов. Напомним, что для труб коэффициент в формуле (174) равен 0,223. За определяющую температуру в (174) принята \(T_m \), разность температур теплоносителя и стенки. Надо заметить, что при \(S/D_t > 1.5 \) теплообмен с увеличением \(S/D_t \) растет медленнее, чем по (174), а при \(S/D_t < 1.1 \) она увеличивается быстрее, чем это следует из формулы (174).

Рис. 33

Стабилизация теплообмена в продольно освобожденных пучках в значительной степени зависит от формы входа. При турбулентном течении в продольном входе коэффициент теплообмена стабилизируется при \(x/d_t = 20...25 \). При поперечном входе длина участка теплообмена стабилизируется до \(x/d_t = 20...50 \).

На рис. 34 показан характер изменения местного коэффициента теплообмена по периметру трубы при их плотной шаговой упаковке. Угол \(\theta \) отсчитывается от точки касания труб. На рисунке \(\alpha = Re =

\[
2 \times 10^4, \quad Re = 5 \times 10^4; \quad I - 4 = \frac{t}{d} = 15,5; \quad 46; \quad 74 \text{ соответственно.}
\]

В исследовании длиной часть Re производится рост размеров и интенсивности турбулентных зон по длине канала при фиксированном Re и в каждом сечении — при увеличении Re. Диаметральное разносимость потока при одновременном существовании турбулентных и нетурбулентных угловых зон обеспечивается системой штамповки (см. рис. 20,6). Такая наблюдается в определении распределения коэффициента теплообмена по периметру (см. рис. 34).

Рис. 34

Рис. 35

На рис. 35 показана зависимость скорости аморфного по периметру коэффициента теплообмена (определенного как частное от деления средней плотности теплового потока на средний температурный напор) для пучка плотной упаковки от параметра \(\Phi_m \). Как видно из рисунка, с увеличением \(\Phi_m \) относение среднего по периметру \(Nu \) к \(Nu_{_{m}} \) для труб возрастает. С увеличением \(\Phi_m \) от 0 до 135 отношение \(Nu/Nu_{_{m}} \) увеличивается на 0,3—0,4 до 1. Это объясняется ростом перетекания тепла по периметру и увеличением длины тепла, воспринимаемого потоком в первых частях канала, где течение турбулентное и коэффициент теплообмена максимальен (см. рис. 34).

Для колец в каналах (рис. 7,6) при ламинарном течении коэффициент теплообмена определяется зависимостью [3]

\[
\frac{Nu_{_{m}}}{Nu_{_{m}}} = \frac{x}{d_2} \left(\frac{1}{Re_2} \right).
\]

При изменении \(d_1/d_2 \) от 0,001 до 1 коэффициент \(Nu_{_{m}}/Nu_{_{m}} \) возрастает от 74,6 до 95. Для охлажденного обогрева на участке теплового обогрева [5].
\[
\text{Nu}_{\text{inm}} = 3.06 + 0.3 (\frac{d_1}{d_2})^{0.85} \quad \text{при} \quad \frac{d_1}{d_2} \geq 0.2; \quad (176)
\]
\[
\text{Nu}_{\text{inm}} = 4.05 \exp(0.185 \frac{d_1}{d_2}) \quad \text{при} \quad \frac{d_1}{d_2} \geq 0.15, \quad (177)
\]

где индекс "f" относится к внутренней стенке, индекс "a" - к наружной, а индекс "n" означает ненесимметричных (односторонний) нагрев.

При турбулентном течении в проточных каналах коэффициент гидравлического сопротивления [4]
\[
\zeta = \frac{f - \frac{d_1}{d_2}}{f + \frac{f - (d_1/d_2)^2}{2 \left(f + \frac{d_1}{d_2} \right)}} \quad (178)
\]
где \(\zeta \) - коэффициент сопротивления для трубы, определяемый по (78).

Коэффициент \(\zeta \) слабо зависит от \(\frac{d_1}{d_2} \).

Теплообмен в проточных каналах в области турбулентной и гидродинамической стабилизации обусловлен Б.С. Петуховым и Л.И. Рейнм в виде зависимостей:

для нагрева внутренней стенки
\[
\text{Nu}_{\text{inm}} = f - 4(Pr)(d_1/d_2)^{n(Pr)} \quad (179)
\]
для нагрева наружной стенки
\[
\text{Nu}_{\text{inm}} = f - 4(Pr)(d_1/d_2)^{n(Pr)} \quad (180)
\]
где \(n(Pr) \) зависит от дифференциала между \(\frac{d_1}{d_2} \); \(n(Pr) = 0.16 \) при \(\frac{d_1}{d_2} \leq 0.2, \) \(n(Pr) = 0.05 \) при \(\frac{d_1}{d_2} > 0.2. \)

Уравнение (179) справедливо при \(0.06 < \frac{d_1}{d_2} < 1 \), уравнение (180) - при \(0 < \frac{d_1}{d_2} < 1.0 \), то есть уравнение - при \(10^4 < Re < 10^5 \) и \(0.7 < Pr < 100. \) Продолжительное значение числа Рейнольдса для труб определяется по (114). Отношение \(\text{Nu}_{\text{inm}}/\text{Nu}_{\text{inm}} \) и \(\text{Nu}_{\text{inm}}/\text{Nu}_{\text{inm}} \) уменьшается с ростом \(\frac{d_1}{d_2} \) и при \(\frac{d_1}{d_2} \rightarrow 0 \) стремится к 0.86.

Для плоских каналов (см. рис. 7а) при \(6 < 5 < 4 \) коэффициент сопротивления определяется формулой (78) в случае \(b/n = 1.5.169. \) Для одностороннего обогрева плоских каналов при турбулентном течении теплообмен можно рассчитывать по формулам (179) и (180), если принять в них \(\frac{d_1}{d_2} = 1. \)

При двустороннем обогреве в плоское канал теплообмен выше, чем при одностороннем, что объясняется различием температурных профилей. При асимметричном нагреве теплообмен сопротивление турбулентного ядра вдвое больше, чем при симметричном, и коэффициент теплообмена меньше. С ростом Re и Pr температурное поле становится более заполненным, влияние теплообмена сопротивление турбулентного ядра уменьшается, и поэтому асимметричность нагрева меньше оказывается на коэффициенте теплообмена.

II. ТЕПЛООБМЕН ПРИ ОПИСАНИЯ ЖИДКОСТИ В СВОБОДНОМ И НАГРУЖЕННОМ КОНВЕКЦИИ В ТУРБУЛЕНТНОМ РЕЖИМЕ

Если плотность жидкости по сечению канала неопределяющая, то на основное течение, обусловленное перепадом давлений, налагается свободно-конвективное движение, возникающее под действием архимедовых сил. Если архимедовы силы, силы вязкости и силы инерции, действующие в потоке, сомкнуты, то такое течение называется жидкостью-архимедовской-сопротивлением. При ламинарном течении силы инерции малы по сравнению с архимедовыми силами и силами вязкости. В этом случае течение называется жидкостью-архимедовской-сопротивлением, а влияние свободной конvection в теплообмене определяется числом Re и угла направления вектора скорости на входе и выход вектора силы тока.

Рассмотрим тип наиболее характерных случаев взаимодействия выведенной и свободной конvection.

Первый случай: течение в вертикальной трубе снизу вверх при нагреве жидкости в сверху вниз - при охлаждении. При нагревании жидкости плотность вблизи стенки меньше, чем в ядре потока. Поэтому частые конвекции вблизи стенки под действием архимедовых сил имеют скорость свободного движения, направленную вверх, и частицы в ядре потока - скоростью, направленной вниз. Если при этом скорость вынужденного движения направлена вверх, то в результате взаимодействия свободной и вынужденной конvection скорость движения вблизи стенок возрастает, а в ядре потока уменьшается по сравнению со скоростью в тех же точках при изотермическом течении. Таким образом течения изображаются на рис. 36а, где показаны профили скоростей для различных Gr/Re. При Gr/Re = 0 профиль скорости параболический (изотермическое течение). С увеличением Gr/Re скорость в ядре потока уменьшается, а вблизи стенки возрастает. Вследствие этого профиль скорости изменяет характер более заполненным, потом на ось трубы возникает максимум, а между осью и стенкой - максимум скорости. Точку максимального с увеличением Gr/Re приближается к стенке. При Gr/Re = 466 скорость на ось становится равной нулю. При дальнейшем увеличении...
чення Gr/Re вблизи ося должен возникнуть течения, направленные в сторону, противоположную пристенной области. Такой же характер течения наблюдается при охлаждении жидкости, движущейся вверх вниз.

![Рис. 36](image1)

Второй случай: течение в горизонтальной трубе сверху вниз при нагревании жидкости и снизу вверх — при охлаждении. При этом скорость свободного и вынужденного течения у стенки направлены в противоположные стороны, а в ядре потока — в одну и ту же сторону. Поэтому в результате взаимодействия вынужденной и свободной конвекции скорость вблизи стенки уменьшается, а в ядре потока увеличивается по сравнению с изотермическим течением, что видно на рис. 36, где показаны профили скоростей для этого случая. С ростом Gr/Re эпицентр течения, градиент скорости у стенки уменьшается и при $Gr/Re = 200$ становится равным нулю. Дальнейшее увеличение Gr/Re приводит к возникновению у стенки течения, противоположного по направлению течению в ядре.

Вязкостно-нейтральное течение с таким профилем неустойчиво. С ростом Re в пристенной области возникают вихри, а затем течение становится турбулентным.

Третий случай: течение в горизонтальной трубе при нагревании внизу и охлаждении вверху. Идея под действием свободной конвекции частицы жидкости движутся в плоскости, перпендикулярной оси трубы, а под действием вынужденной конвекции эти же частицы одновременно перемещаются вдоль оси трубы. При нагревании у стенки возникает восходящее течение жидкости, а в середине трубы — наоборот. При охлаждении жидкость движется носит обратный характер. Существенное движение жидкости схематически можно представить как движение, происходящее по шнуру с витовым линиям с противоположным направлением вращения. При нагревании жидкости максимальная скорость свдвигается вниз, тепло-дляточным вентилям по окружности: низу она больше, чем вверху. Неравномерность теплообмена увеличивается с ростом превышения длины $X_0 = l_0 / Re$.

Характер теплообмена для трех рассмотренных случаев показан на рис. 37 в виде зависимости Nu_m от $Re_m d/8$.

![Рис. 37](image2)

В первом случае (кривая 1) свободная конвекция затеняет ламинарное течение, и теплообмен слабо возрастает с увеличением l_0 / Re, а затем при достижении Re_m, которое увеличивается с ростом Gr/Re, возникает турбулентное течение, теплообмен резко возрастает до значений, соответствующих турбулентному течению. Во втором случае (кривая 2) в потоке возникает более интенсивное перемешивание, что уже при $Re_m > 250$ течение и теплообмен подчиняются закономерностям, свойственным турбулентному течению. Аналогичная ситуация наблюдается и в третьем случае (кривая 3).

![Рис. 38](image3)

При неоднородном распределении плотности в потоке жидкости не только при ламинарном, но и при турбулентном движении могут быть вводимыми течения с существенным влиянием архимедовых сил (вязкостно-...
12. ИНТЕНСИФИКАЦИЯ ТЕПЛООБМЕНА В КАНАЛАХ

К современным теплообменным аппаратам предъявляются повышенные требования по компактности, габаритам и массе. При заданных значениях тепловой мощности, расходах теплоносителей и гидравлических сопротивлениях важно подобрать аппараты либо за счет увеличения коэффициентов теплоотдачи, либо за счет более плотной компоновки (увеличения диаметра труб, расстояния между ними). Поэтому диаметр труб и расстояния между ними ограничиваются технологическими требованиями, поэтому возможность этого пути практически исчерпана. Остаётся только уменьшение габаритных размеров и массы аппаратов за счет интенсификации теплообмена.

Известно много методов интенсификации теплообмена. Среди них, в частности, методы интенсификации теплообмена в трубах с помощью различных газовых реакций, включая реакции между элементами, вводимыми в трубы, для увеличения коэффициентов теплообмена. В ряде случаев для интенсификации теплообмена применяются также присоединяемые наружу коллекторы для подачи теплоносителей в трубу, расположенные на входе или на выходе.

Кроме того, с целью интенсификации теплообмена используются также присоединяемые наружу коллекторы для подачи теплоносителей в трубу, расположенные на входе или на выходе.

Однако наиболее реальными, доступными и высокоэффективными являются интенсифицируемые перепады теплоносителей в трубах.

При умеренном росте гидравлического сопротивления они значительно увеличивают коэффициент теплоотдачи. Однако для интенсификации теплообмена на турбине установленной мощности основан на подходе к выбору структуры турбулентного течения в каналах.

На рис. 11 показано распределение вдоль радиуса трубы безмерных температур Θ, скорости $u_x(y)/u_f$, плотности теплового потока $q(x)/q_f$, массовой скорости $\rho u_x/(\rho u_f)$ и коэффициента турбулентного переноса инерции μ_x/μ_f при течении в трубе газа с $Re = 4,3 \times 10^5$, $Pr = 0,7$ (1 - нагревание воздуха при $T_w = 1000$ K, $T_f = 154$ K; 2 - охлаждение воздуха при $T_w = 300$ K, $T_f = 952$ K; 3 - изотермическое течение).

Так как

$$q = (\lambda + \lambda_t) \frac{dT}{dr},$$

а коэффициент теплоотдачи

$$k = \frac{T_w - T_f}{\lambda + \lambda_t},$$

где средненомоссвая температура потока

$$T_f = \frac{\int_0^r \int_0^r T \rho \rho v \, dr \, dr}{\int_0^r \int_0^r \rho \, dr \, dr},$$

то нетрудно заключить, что наиболее влияние на k оказывает увеличение λ_t и непосредственной близости от стенки. В присняном слое толщиной $0,05...0,1f$ среднее значение коэффициента турбулентной теплоотдачи λ_t не превышает 10% от максимального для данного случая Рейнольдса, а тепловую по потоку близость к максимуму. Поэтому в пристеночном слое толщиной $0,05...0,1f$ или выше, $y' = \sqrt{\omega_{\text{max}}}/\nu$ = 50...150 (y' - расстояние от стенки; ω_{max} - коэффициент кинематической вязкости; ν - вискоза на стенке). Расходится 50...700% от полного диапазона температурного напора. Чем сильнее число Рейнольдса, тем на более высокой пристеночной слой представляется важным. Соответственно, наибольшей интенсификацией теплообмена можно добиться, увеличивая λ_t именно в таких пристеночных слоях. В то же время важно, что дополнительная турбулентизация вдоль потока (где λ_t велико) может увеличить теплообмен, хотя в присняном слое гидравлических потерь.

Эффективным методом интенсификации теплообмена является создание в пристеночной области отрыва нос. Наилучшие результаты получаются при дискретной турбулентизации по течении каналов, причем ожидаемая турбулентная вязкость должна быть значительно меньше чем критерий. Коэффициент турбулентного переноса $Re = 4,3 \times 10^5$, $Pr = 0,7$ (1 - нагревание воздуха при $T_w = 1000$ K, $T_f = 154$ K; 2 - охлаждение воздуха при $T_w = 300$ K, $T_f = 952$ K; 3 - изотермическое течение).
Если же увеличивать расстояние между турбулизаторами, то дополнительно возникшие в зоне взаимного перекрытия колец турбулизаторов и возникающие при их периодическом разрушении турбуляционные пульсации переносятся основным потоком жидкости в следующую панель, повышая \(\lambda_p \) только около нее, а значит, интенсификация теплообмена будет достигнута ценой минимальных гидравлических потерь. При слишком больших (т. е. \(t/h > 50...100 \)) расстояния между турбулизаторами дополнительная турбулентность уменьшает заметно затухнуть при некотором расстоянии от турбулизатора, а остальной участок канала до следующего турбулизатора по сечению потока будет мало отличаться от гладкого канала.

Максимальное увеличение теплоотдачи \(Nu/Nu_{w} \) и гидравлического сопротивления \(\xi/\xi_{w} \) достигается при \(t/h = 10 \), причем максимум \(Nu/Nu_{w} \) не зависит от формы турбулизатора, а максимум \(\xi/\xi_{w} \) сильно зависит (он минимальен при плоской форме турбулизатора).

Проведенный анализ позволил выбрать рациональный метод интенсификации теплообмена в каналах любого поперечного сечения и разработать способы его реализации. Для турбулизаторов без внешнего охлаждения в работе [14] предложен следующий метод интенсификации теплообмена. На внутренней поверхности теплообменных труб на наносят периодически расположенными кольцами каналы (рис. 39). При этом на внутренней поверхности труб образуются кольцевые диаграммы с плоской конфигурацией. Диаграммы и кольцевые каналы турбулизируют поток в пространстве и обеспечивают интенсификацию теплообмена как снаружи, так и внутри труб. При этом не увеличивается нагрузка на трубу, что позволяет использовать их в технике, где не может существовать технологическая обработка турбулизаторов теплообменных аппаратов. Данные поверхности теплообмена привлекаются в турбулизаторы аппаратов, работающих на газах и жидкостях, а также при кипении и конденсации теплоносителей.

![Рис. 39](image)

Увеличение коэффициентов теплоотдачи и гидравлического сопротивления в трубах с колышевыми диаграммами по сравнению с гладкими}

![Рис. 40](image)

При определении \(\xi/\xi_{w} \) и коэффициента гидравлического сопротивления \(\xi \) скорость потока рассчитывалась по продольному сечению гладких каналов.

Были найдены оптимальные параметры турбулизаторов, установлено, что на критический диаметр влияет только на высоту турбулизатора, а на действительный диаметр влияет только на высоту турбулизатора. При нанесении турбулизаторов на стенах, где достигается наибольшая эффективность использования турбулизаторов, максимум \(Nu/Nu_{w} \) и минимум \(\xi/\xi_{w} \) сопротивления достигается при \(Re = 4...10^{5} \).

В области развитого турбулентного течения наблюдается своеобразное гидравлическое сопротивление, при котором рост теплообмена равен росту гидравлического сопротивления. Т. е., \(Nu/Nu_{w} > \xi/\xi_{w} \). Соответствующее \(Nu/Nu_{w} = \xi/\xi_{w} \) при \(t/D_{0} = 0,25 \) возможно при \(Re = 4...10^{5} \).
Теоретический анализ структуры турбулентных течений в каналах с открытою зоной и источником увеличения турбулентности в потоке, а также экспериментальная исследования турбулентности в каналах различного поперечного сечения позволили обнаружить прямую связь между разницей в значениях известного открытого неизвестного ранее закономерности динамики турбулентности на стенках каналов с дискретной турбулентностью потока при циркуляции в жидкости, заключающуюся в том, что в определенном диапазоне соответствующих размеров и расположения турбулентных зон рост турбулентности больше роста гидравлического сопротивления по сравнению с аналогичными гидравлическими каналами [18]. Использование практически реализуемого соотношения \(Nu/\bar{Nu} = \gamma/\gamma_0 \) позволяет при заданном значении тепловой мощности и гидравлического сопротивления теплообменника уменьшить не только объем аппарата, но и площадь его поперечного сечения.

Применение данных методов позволяет уменьшить объем теплообменного аппарата примерно в два раза при незначительных значениях температуры и мощности в зависимости от теплоносителя.

Значительный эффект наблюдается в переходной области. При этом объем теплообменного аппарата может быть увеличен в 2,5 раза.

Объясняется с помощью параметра \(\beta = \frac{d_T}{d} \) изложении пучки труб с коллекторами каналами, вплоть до \(Nu/\bar{Nu} = 1,4 \ldots 1,5 \) при относительной площади разделения труб и площадки \(S/D^2 = 1,2 \). При этом объем аппарата может быть снижен на одну треть. Накопление труб с различными соотношениями между каналами может привести к оптимальным условиям теплообмена при различных значениях размещения труб в пучке (\(S/D^2 = 1,05 \ldots 1,5 \)).

Приведем некоторые расчетные рекомендации.

1. Опытные данные по средней теплообменности при нагревании и охлаждении газов обобщаются следующими зависимостями:

 \[
 Nu = \left[\frac{f + \frac{4}{3} Re_d - 6,6}{3,5} \right] \left[1 - 2 \exp \left(- \frac{8,2 \left(\frac{1}{15} \right)}{(t/D_s)^{0.58}} \right) \right], \quad (183)
 \]

 \[
 Nu = \left[\frac{f + \frac{4}{3} Re_d - 6,6}{3,5} \right] \left[1 - 2 \exp \left(- \frac{8,2 \left(\frac{1}{15} \right)}{(t/D_s)^{0.58}} \right) \right], \quad (184)
 \]

 \[
 Nu = \left[\frac{f + \frac{4}{3} Re_d - 6,6}{3,5} \right] \left[1 - 2 \exp \left(- \frac{8,2 \left(\frac{1}{15} \right)}{(t/D_s)^{0.58}} \right) \right], \quad (185)
 \]

 \[
 Nu = \left[\frac{f + \frac{4}{3} Re_d - 6,6}{3,5} \right] \left[1 - 2 \exp \left(- \frac{8,2 \left(\frac{1}{15} \right)}{(t/D_s)^{0.58}} \right) \right], \quad (186)
 \]

 \[
 Nu = \left[\frac{f + \frac{4}{3} Re_d - 6,6}{3,5} \right] \left[1 - 2 \exp \left(- \frac{8,2 \left(\frac{1}{15} \right)}{(t/D_s)^{0.58}} \right) \right], \quad (187)
 \]

2. Средняя теплообменность для каналов жидкостей при \(t/D_s = 0,5 \) и \(d_s/D_s = 0,9 \) (для \(Re = 10^4 \)) составляют:

 \[
 Nu = \left[\frac{100}{(t/D_s)^{0.448}} \right], \quad (180)
 \]

 \[
 Nu = \left[\frac{100}{(t/D_s)^{0.448}} \right], \quad (181)
 \]

3. Опытные данные по коэффициентам гидравлического сопротивления аппарата хранятся с точностью ±12% при \(Re = 10^4 \ldots 4 \times 10^5 \) следующими зависимостями:

 \[
 \frac{d_s}{D_s} = 0,9 \ldots 0,97, \quad t/D_s = 0,5 \ldots 10
 \]

 \[
 \frac{d_s}{D_s} = 0,9 \ldots 0,97, \quad t/D_s = 0,5 \ldots 10
 \]
при \(\frac{d_f}{D_g} = 0,88 \ldots 0,96, \quad \frac{t}{D_g} = 0,5 \)

\[
\frac{Y}{Y_{st}} = \left[1 + t \left(4 - \frac{d_f}{D_g} \right) \left(1 - \frac{d_f}{D_g} \right) \right] \exp \left[\frac{20.9 \left(\frac{d_f}{D_g} \right)^{0.8/9} \left(\frac{d_f}{D_g} \right)^{0.55}}{3.4 \frac{d_f}{D_g} + 0.1} \right] \tag{194}
\]

при \(\frac{d_f}{D_g} = 0,90 \ldots 0,98, \quad \frac{t}{D_g} = 0,25 \)

\[
\frac{Y}{Y_{st}} = \left[1 + t \left(4 - \frac{d_f}{D_g} \right) \left(1 - \frac{d_f}{D_g} \right) \right] \exp \left[\frac{20.9 \left(\frac{d_f}{D_g} \right)^{0.8/9} \left(\frac{d_f}{D_g} \right)^{0.55}}{3.4 \frac{d_f}{D_g} + 0.1} \right] \tag{195}
\]

В (193) \(F_{st} \) определяется по формуле

\[
F_{st} = \left(1 + \frac{d_f}{D_g} \right) \exp \left[\frac{20.9 \left(\frac{d_f}{D_g} \right)^{0.8/9} \left(\frac{d_f}{D_g} \right)^{0.55}}{3.4 \frac{d_f}{D_g} + 0.1} \right] \tag{196}
\]

где \(n = 0,14 \) при нагревании газов; \(n = 0 \) при охлаждении газов; \(n = 1/3 \) при нагревании жидкостей.

В (194) и (195) \(F_{st} \) определяется по формуле

\[
F_{st} = 0,05 \frac{d_f}{D_g} \exp \left[\frac{20.9 \left(\frac{d_f}{D_g} \right)^{0.8/9} \left(\frac{d_f}{D_g} \right)^{0.55}}{3.4 \frac{d_f}{D_g} + 0.1} \right] \tag{197}
\]

полученной в условиях изотермического течения и охлаждения газов.

4. Влияние неизотермичности потока на коэффициент гидравлического сопротивления в трубах с турбулизаторами неоценимо, чем в гладких трубах. Для нативных труб зависимость показателя степени \(\mu_u/\mu_T \) от высоты диаметра \(\frac{t}{D_g} \) при \(\frac{d_f}{D_g} = 0,5 \) можно представить соотношением

\[
n = \frac{n}{n} = \left(\frac{d_f}{D_g} \right)^{0.056} \tag{198}
\]

где \(n_0 = 1/3 \) — показатель степени для гладкой трубы.

С уменьшением шага нативы влияние неизотермичности снижается, и закон сопротивления приближается к автомодельному. При \(\frac{d_f}{D_g} = 0,94 \) зависимость \(n \) от \(\frac{t}{D_g} \) будет

\[
n = \frac{n}{n} = 0,056 \frac{d_f}{D_g} \frac{t}{D_g} \tag{199}
\]

5. В общем случае коэффициент гидравлического сопротивления при неизотермическом турбулентном течении жидкостей в трубах с искусственными турбулизаторами можно представить следующим образом:

\[
\frac{Y}{Y_{st}} = \left(\frac{\mu_u}{\mu_T} \right)^n \tag{200}
\]

или

\[
\frac{Y}{Y_{st}} = \frac{Y_0}{Y_{st}} \left(\frac{\mu_u}{\mu_T} \right)^n \tag{201}
\]

где \(\frac{Y}{Y_{st}} = \frac{Y_0}{Y_{st}} \left(\frac{\mu_u}{\mu_T} \right)^n \), согласно (193) — (195). а \(n = \frac{n}{n_0} = \frac{\mu_u}{\mu_T} \) определяется как произведение (196) на (199).
6. В таблице приведены опытные данные, характеризующие Y/Y_{eq} и Nu/Nu_{eq}, по которым можно рассчитать интенсификацию теплообмена при течении газов в каналах.

7. Теплоотдачу и гидравлическое сопротивление продольно овальных пучков труб при $S/D_{h} = 1,2,...,1,9$, $h/d_{\text{eq}} = 0...0,2$, $t/d_{\text{eq}} = 0,25...2$ можно определить по следующим формулам:

при $Re < Re_{1}$

$$ Nu/Nu_{\text{eq}} = f; \quad (202) $$

при $Re_{1} < Re < Re_{2}$

$$ \frac{Nu}{Nu_{\text{eq}}} = f + 0,5 \frac{1gRe - 1gRe_{1}}{1gRe_{2} - 1gRe_{1}} \left[f - \exp\left(-35,6 \frac{h}{d_{\text{eq}}} \right) \right] \left(f - 0,35 \frac{t}{d_{\text{eq}}} \right); \quad (203) $$

при $Re_{2} < Re < 10^{5}$

$$ \frac{Nu}{Nu_{\text{eq}}} = f + 0,6 \left[f - \exp\left(-35,6 \frac{h}{d_{\text{eq}}} \right) \right] \left(f - 0,35 \frac{t}{d_{\text{eq}}} \right); \quad (204) $$

при $Re < 3,1 \cdot 10^{3}$

$$ \frac{Y}{Y_{\text{eq}}} = f, \quad (205) $$

при $Re = 3,1 \cdot 10^{3}...2 \cdot 10^{4}$

$$ \frac{Y}{Y_{\text{eq}}} = f + 7,55 \frac{h}{d_{\text{eq}}} \left(1gRe - 3,5 \right) - 0,035 \sin \left[\left(f - 0,24 \frac{h}{d_{\text{eq}}} \right) \frac{\pi}{2} \right] \left(f - 0,488 \frac{t}{d_{\text{eq}}} \right); \quad (206) $$

при $Re = 2 \cdot 10^{4}...10^{5}$

$$ \frac{Y}{Y_{\text{eq}}} = f + 3,21 \frac{h}{d_{\text{eq}}} \left(1gRe - 2,27 \right) + 0,09 \left(1gRe - 4,3 \right) \sin \left[\left(f - 0,24 \frac{h}{d_{\text{eq}}} \right) \frac{\pi}{2} \right] \left(f - 0,488 \frac{t}{d_{\text{eq}}} \right). \quad (207) $$

Из (202) – (204) видно, что при $Re < Re_{1}$, напрямую влияет на теплоотдачу, а при $Re > Re_{2}$ интенсификация не зависит от Re. Для определения Re_{1} и Re_{2} можно использовать следующие формулы:

$$ Re_{1} = \left(3,6 - 35,8 \frac{h}{d_{\text{eq}}} \right) \cdot 10^{4}; \quad (208) $$

$$ Re_{2} = \left(4,7 - 18,85 \frac{h}{d_{\text{eq}}} \right) \cdot 10^{4}. \quad (209) $$

В (202) – (209) h – глубина канавки; d_{eq} – эквивалентный диаметр пучка при бесконечно большом числе труб; t – шаг размещения канавок.

Число Nu_{eq} в (202) – (204) определяется по (174). В (205) – (207) Y_{eq} находится по (172) при этом Y_{eq} определяется по (78).
ЛИТЕРАТУРА

ОГЛАВЛЕНИЕ

Введение .. 3
1. Дифференциальные уравнения и граничные условия для конвективного теплообмена .. 6
2. Одномерное описание течения и теплообмена в каналах.
 Коэффициенты теплоотдачи в гидравлическом сопротивлении .. 12
3. Особенности теплообмена и гидродинамики при течении теплоносителя в каналах .. 16
4. Общий вид кратерных уравнений для конвективного теплообмена в каналах. Определяющий размер. Определяющая температура .. 20
5. Гидравлическое сопротивление при изотермическом течении теплоносителя в трубах .. 26
6. Теплообмен и гидравлическое сопротивление при неконвективном гидродинамически стабилизированном течении теплоносителя в трубах .. 31
7. Теплообмен на начальном участке труб .. 41
8. Теплообмен в области перехода от ламинарного режима течения к турбулентному .. 46
9. Стационарный конвективный теплообмен в трубах .. 49
10. Теплообмен и гидравлическое сопротивление в цилиндрических каналах .. 59
11. Теплообмен при совместном влиянии свободной и вынужденной конвекции в трубах .. 67
12. Интенсификация теплообмена в каналах .. 70
Литература .. 80

Тем. июнь 1989, поз. 129

Храпов Георгий Александрович

ОСНОВЫ КОНВЕКТИВНОГО ТЕПЛООБМЕНА В КАНАЛАХ

Редактор Р.М. Белозерова
Техн. редактор Н.Б. Карпова
Корректор А.А. Степанова
Л 26807. Подписано к печати 24.04.89
Бум. офсетная. Формат 60х84 I/16. Печать офсетная
Печ. л. 4,88; уч.-изд. л. 5,00. Тираж 1000
Зак. 2м42 /2417. Цена 15 к.
Типография издательства МАИ
ИП6871, Москва, Волоколамское шоссе, 4